812 resultados para 350202 Business Information Systems (incl. Data Processing)
Resumo:
Submitted to Illinois Department of Natural Resources.
Resumo:
Submitted to Illinois Department of Natural Resources.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: p. 325-327.
Resumo:
Mode of access: Internet.
Resumo:
Hearings held on S. 3418, 3633, 3116, 2810, and 2542.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Background and purpose Survey data quality is a combination of the representativeness of the sample, the accuracy and precision of measurements, data processing and management with several subcomponents in each. The purpose of this paper is to show how, in the final risk factor surveys of the WHO MONICA Project, information on data quality were obtained, quantified, and used in the analysis. Methods and results In the WHO MONICA (Multinational MONItoring of trends and determinants in CArdiovascular disease) Project, the information about the data quality components was documented in retrospective quality assessment reports. On the basis of the documented information and the survey data, the quality of each data component was assessed and summarized using quality scores. The quality scores were used in sensitivity testing of the results both by excluding populations with low quality scores and by weighting the data by its quality scores. Conclusions Detailed documentation of all survey procedures with standardized protocols, training, and quality control are steps towards optimizing data quality. Quantifying data quality is a further step. Methods used in the WHO MONICA Project could be adopted to improve quality in other health surveys.
Resumo:
Land-surface processes include a broad class of models that operate at a landscape scale. Current modelling approaches tend to be specialised towards one type of process, yet it is the interaction of processes that is increasing seen as important to obtain a more integrated approach to land management. This paper presents a technique and a tool that may be applied generically to landscape processes. The technique tracks moving interfaces across landscapes for processes such as water flow, biochemical diffusion, and plant dispersal. Its theoretical development applies a Lagrangian approach to motion over a Eulerian grid space by tracking quantities across a landscape as an evolving front. An algorithm for this technique, called level set method, is implemented in a geographical information system (GIS). It fits with a field data model in GIS and is implemented as operators in map algebra. The paper describes an implementation of the level set methods in a map algebra programming language, called MapScript, and gives example program scripts for applications in ecology and hydrology.
Resumo:
This thesis describes research into business user involvement in the information systems application building process. The main interest of this research is in establishing and testing techniques to quantify the relationships between identified success factors and the outcome effectiveness of 'business user development' (BUD). The availability of a mechanism to measure the levels of the success factors, and quantifiably relate them to outcome effectiveness, is important in that it provides an organisation with the capability to predict and monitor effects on BUD outcome effectiveness. This is particularly important in an era where BUD levels have risen dramatically, user centred information systems development benefits are recognised as significant, and awareness of the risks of uncontrolled BUD activity is becoming more widespread. This research targets the measurement and prediction of BUD success factors and implementation effectiveness for particular business users. A questionnaire instrument and analysis technique has been tested and developed which constitutes a tool for predicting and monitoring BUD outcome effectiveness, and is based on the BUDES (Business User Development Effectiveness and Scope) research model - which is introduced and described in this thesis. The questionnaire instrument is designed for completion by 'business users' - the target community being more explicitly defined as 'people who primarily have a business role within an organisation'. The instrument, named BUD ESP (Business User Development Effectiveness and Scope Predictor), can readily be used with survey participants, and has been shown to give meaningful and representative results.
Resumo:
The thesis reports of a study into the effect upon organisations of co-operative information systems (CIS) incorporating flexible communications, group support and group working technologies. A review of the literature leads to the development of a model of effect based upon co-operative business tasks. CIS have the potential to change how co-operative business tasks are carried out and their principal effect (or performance) may therefore be evaluated by determining to what extent they are being employed to perform these tasks. A significant feature of CIS use identified is the extent to which they may be designed to fulfil particular tasks, or by contrast, may be applied creatively by users in an emergent fashion to perform tasks. A research instrument is developed using a survey questionnaire to elicit users judgements of the extent to which a CIS is employed to fulfil a range of co-operative tasks. This research instrument is applied to a longitudinal study of Novell GroupWise introduction at Northamptonshire County Council during which qualitative as well as quantitative data were gathered. A method of analysis of questionnaire results using principles from fuzzy mathematics and artificial intelligence is developed and demonstrated. Conclusions from the longitudinal study include the importance of early experiences in setting patterns for use for CIS, the persistence of patterns of use over time and the dominance of designed usage of the technology over emergent use.
Resumo:
In this paper conceptual foundations for the development of Grid systems that aimed for satellite data processing are discussed. The state of the art of development of such Grid systems is analyzed, and a model of Grid system for satellite data processing is proposed. An experience obtained within the development of the Grid system for satellite data processing in the Space Research Institute of NASU-NSAU is discussed.
Resumo:
This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.