944 resultados para 3-AMINO ALKYLATED INDOLES
Resumo:
Chlorine-35 NQR frequency and spin-lattice relaxation time measurements as a function of temperature in the range 77-300 K were carried out on 2-amino-3,5-dichloropyridine. Two NQR signals were observed and were assigned to the two chlorines present in the molecule using the additive model for substituent effects. The temperature dependence of the NQR frequency was analysed in terms of the torsional oscillations of the molecule and the torsional frequencies and their temperature dependence were calculated numerically using a two-mode approximation. The temperature dependence of the NQR spin-lattice relaxation time was found to be mainly due to the torsional oscillations of the molecule, with anharmonicity effects showing up at higher temperatures. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
The title compound, C(14)H(21)Br(2)N(2)(+)center dot C(7)H(7)O(3)S, features a salt of protonated bromhexine, a pharmaceutical used in the treatment of respiratory disorders, and the p-toluenesulfonate anion. The crystal packing is stabilized by intermolecular N-H center dot center dot center dot O, N-H center dot center dot center dot Br and C-H center dot center dot center dot O hydrogen bonds.
Resumo:
In the title racemic compound, C(26)H(32)N(2)O(3), an intramolecular O-H center dot center dot center dot N hydrogen bond is formed between the phenolic OH group and the tertiary amine N atom. Another O-H center dot center dot center dot N hydrogen bond that is formed between the OH group and the pyridine N atom links the molecules into a polymeric chain extending along the a axis. The structure is further stabilized by intramolecular and intermolecular C-H center dot center dot center dot O interactions.
Resumo:
The current manuscript describes conformational analysis of 15-membered cyclic tetrapeptides (CTPs), with alpha 3 delta architecture, containing sugar amino acids (SAA) having variation in the stereocenter at C5 carbon. Conformational analyses of both the series, in protected and deprotected forms, were carried out in DMSO-d(6) using various NMR techniques, supported by restrained MD calculations. It was intriguing to notice that the alpha 3 delta macrocycles got stabilized by both 10-membered beta-turn as well as a seven-membered gamma-turn, fused within the same macrocycle. The presence of fused sub-structures within a 15-membered macrocycle is rare to see. Also, the stereocenter variation at C5 did not affect the fused turn structures and exhibited similar conformations in both the series. The design becomes highly advantageous as fused reverse turn structures are occurring in the cyclic structure with minimalistic size macrocycle and this can be applied to develop suitable pharmacophores in the drug development process. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We report the preparation, analysis, and phase transformation behavior of polymorphs and the hydrate of 4-amino-3,5-dinitrobenzamide. The compound crystallizes in four different polymorphic forms, Form I (monoclinic, P2(1)/n), Form II (orthorhombic, Pbca), Form III (monoclinic, P2(1)/c), and Form IV (monoclinic, P2(1)/c). Interestingly, a hydrate (triclinic, P (1) over bar) of the compound is also discovered during the systematic identification of the polymorphs. Analysis of the polymorphs has been investigated using hot stage microscopy, differential scanning calorimetry, in situ variable-temperature powder X-ray diffraction, and single-crystal X-ray diffraction. On heating, all of the solid forms convert into Form I irreversibly, and on further heating, melting is observed. In situ single-crystal X-ray diffraction studies revealed that Form II transforms to Form I above 175 degrees C via single-crystal-to-single-crystal transformation. The hydrate, on heating, undergoes a double phase transition, first to Form III upon losing water in a single-crystal-to-single-crystal fashion and then to a more stable polymorph Form I on further heating. Thermal analysis leads to the conclusion that Form II appears to be the most stable phase at ambient conditions, whereas Form I is more stable at higher temperature.
Resumo:
Synthesis of 2-amino-1,3,4-oxadiazole derivatives of N-Cbz(benzyloxycarbonyl)/Boc-protected amino/peptide acids under sonication is described. The conditions involved in the present protocol are simple, mild, and racemization free. The utility of 2-amino group in the substituted oxadiazoles for the incorporation of peptide and ureido bonds to obtain hybrid peptidomimetics is also delineated. The 2-amino-1,3,4-oxadiazole 3b was obtained as a single crystal, and its molecular structure has been confirmed through X-ray crystallographic study.
Resumo:
A cascade aldol cyclization reaction between 3-isothiocyanato oxindoles and alpha-ketophosphonates has been developed for the synthesis of beta-amino-alpha-hydroxyphosphonate derivatives. Catalyzed by a quinine-based tertiary amino-thiourea derivative, this reaction delivers 2-thioxooxazolidinyl phosphonates based on a spirooxindole scaffold bearing two contiguous quaternary stereogenic centers in high yields with excellent diastereo- (up to >20:1 dr) and enantioselectivities (up to >99:1 er).
Resumo:
The first thermodynamic dissociation constants of glycine in 5, 15 mass % glucose + water mixed solvents at five temperatures from 5 to 45-degrees-C have been determined from precise emf measurements of a cell without liquid junction using hydrogen and Ag-AgCl electrodes and a new method of polynomial approximation proposed on the basis of Pitzer's electrolytic solution theory in our previous paper. The results obtained from both methods agree within experimental error. The standard free energy of transfer for HCl from water to aqueous mixed solvent have been calculated and the results are discussed.
Resumo:
A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)(+) under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of C-O bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted detzvatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono- 1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)(2). In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios AC(BCEOC)/AC(CEOC) = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C-18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was < 10% of the expected concentration. Excellent linear responses were observed with coefficients of > 0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Colourless single crystals of [Ag-3(Dat)(2)](NO3)(3) were obtained from a reaction of silver(l) nitrate and 3,5-dimethyl-4-amino-1,2,4-triazole (Dat). In the crystal structure (orthorhombic, Fdd2, Z = 8, a = 1100.1(2), b = 3500.3(2), c = 1015.4(3) pm, R, = 0.0434) there are two crystallographically non-equivalent silver sites in a one (Ag1) to two ratio (Ag2). Both resemble linear N-Ag-N coordination although angles are 163 degrees and 144 degrees, respectively Each Dat ligand coordinates with the two ring nitrogen atoms at 216 to 219 pm and with one amino-nitrogen atom at 229 pro. According to the composition [Ag-3(Dat)(2)](3+) = [(Dat)Ag-3/2](3+), a polymeric structure is built with all Ag+ ions bridging.
Resumo:
Colourless single crystals of [Hg(CF3)(2)(Pur)](4) and [Hg(CF3)(2)(Dat)](2) were obtained from aqueous and etheric solutions of the respective components Purine, (imidazo[4,5-d]pyrimidine, Pur), 3,5-dimethyl-4 '-amino-triazole (Dat) and bis(trifluoromethyl)mercury(II), Hg(CF3)(2). [Hg(CF3)(2)(Pur)](4) crystallizes with the tetragonal system (P-4, Z = 8, a = 1486.8(2), c = 1026.2(l) pm, R-all = 0.0657) with tetrameric molecules consisting of four purine molecules bridged by slightly bent Hg(CF3)2 molecules forming a cage with the CF3 ligands surrounding this cage. The two modifications of [Hg(Dat)(CF3)2]2 (1: 170 K, triclinic, P-1, Z = 2, a 814.9(2), b = 845.4(2), c = 968.4(3) pm, alpha = 106.55(2)degrees, beta= 103.41(2)degrees, gamma = 110.79(2)degrees, R-all = 0.1189; II: monoclinic, P2(1)/c, Z = 8, a = 879.8(2), b = 1731.0(3), c = 1593.9(3) pm, beta = 106.89(2)degrees, R-all = 0.1199) both contain dimeric molecules that are stacked parallel to one crystal axis to strands which are arranged in a parallel fashion in I and rotated against each other in 11 by 110 degrees. In both, the tetrameric [Hg(CF3)(2)(Pur)](4) and the dimeric [Hg(CF3)(2)(Dat)](2) the Hg(CF3)(2) molecules are slightly bent (around 167 and 170 degrees) and rather weakly attached to the N-donor ligands Pur and Dat with Hg-N distances around 272 pm, although in both cases the Hg atoms bridge between two ligand molecules.
Resumo:
Methyl 4-acetyl-5-(2-nitrophenyl)pyrrolidine-2-carboxylate 5, readily available in one step by a 1,3-dipolar cycloaddition, undergoes reduction, cyclisation and fragmentation to the corresponding quinoline when treated with hydrogen and palladium.
Resumo:
AMPA receptors are tetrameric glutamate-gated ion channels that mediate fast synaptic neurotransmission in mammalian brain. Their subunits contain a two-lobed N-terminal domain (NTD) that comprises over 40% of the mature polypeptide. The NTD is not obligatory for the assembly of tetrameric receptors, and its functional role is still unclear. By analyzing full-length and NTD-deleted GluA1-4 AMPA receptors expressed in HEK 293 cells, we found that the removal of the NTD leads to a significant reduction in receptor transport to the plasma membrane, a higher steady state-to-peak current ratio of glutamate responses, and strongly increased sensitivity to glutamate toxicity in cell culture. Further analyses showed that NTD-deleted receptors display both a slower onset of desensitization and a faster recovery from desensitization of agonist responses. Our results indicate that the NTD promotes the biosynthetic maturation of AMPA receptors and, for membrane-expressed channels, enhances the stability of the desensitized state. Moreover, these findings suggest that interactions of the NTD with extracellular/synaptic ligands may be able to fine-tune AMPA receptor-mediated responses, in analogy with the allosteric regulatory role demonstrated for the NTD of NMDA receptors.