997 resultados para 25-degrees-c
Resumo:
The aim of this study was to evaluate the survivability of Bifidobacterium breve NCIMB 702257 in a three malt-based media supplemented with cysteine and yeast extract, and to determine the protective effect of these growth factors. A number of parameterised mathematical models were used to predict of kinetics of viability and total acidity during storage at different temperatures. Results demonstrated a good fit to the experimental mathematical model. The Arrhenius equations showed only reasonable fits and the polynomial plots contained a large area without data between 4 and 25 degrees C. In addition, it was shown that cysteine promotes growth and acid production by bifidobacteria, but does not extend survivability. On the other hand, increasing the yeast extract content of the fermentation media enhances the survivability of B. breve. To our knowledge, this is the first study to address the modelling of the survivability of probiotic bacteria in a cereal based fermentation media at different temperatures, introducing a more quantitative approach to the study of the shelf-life of a probiotic product. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
An increase in resistance to one natural enemy may result in no correlated change, a positive correlated change, or a negative correlated change in the ability of the host or prey to resist other natural enemies. The type of specificity is important in understanding the evolutionary response to natural enemies and was studied here in a Drosaphila-parasitoid system. Drosophila melanogaster lines selected for increased larval resistance to the endoparasitoid wasps Asobara tabida or Leptopilina boulardi were exposed to attack by A. tabida, L. boulardi and Leptopilina heterotama at 15 degrees C, 20 degrees C, and 25 degrees C. In general, encapsulation ability increased with temperature, with the exception of the lines selected against L. boulardi, which showed the opposite trend. Lines selected against L, boulardi showed large increases in resistance against all three parasitoid species, and showed similar levels of defense against A. tabida to the lines selected against that parasitoid. In contrast, lines selected against A. tabida showed a large increase in resistance to A. tabida and generally to L. heterotoma, but displayed only a small change in their ability to survive attack by L. boulardi. Such asymmetries in correlated responses to selection for increased resistance to natural enemies may influence host-parasitoid community structure.
Resumo:
Salmonella enteritidis isolated from poultry infections generated a convoluted colonial morphology after 48 h growth on colonisation factor antigen (CFA) agar at 25 degrees C. A mutant S. enteritidis defective for the elaboration of the SEF17 fimbrial antigen, in which the agf gene cluster was inactivated by insertion of an ampicillin resistance gene cassette, and other wild-type S. enteritidis transduced to this genotype failed to produce convoluted colonies. However, growth of SEF17(-) mutans at 25 degrees C on CFA agar supplemented with 0.001% Congo red resulted in partial recovery of the phenotype. Immunoelectron microscopy demonstrated that copious amounts of the SEF17 fimbrial antigen were present in the extracellular matrix of convoluted colonies of wild-type virulent S. enteritidis isolates. Bacteria were often hyperflagellated also. Immunoelectron microscopy of SEF17(-) mutants grown on CFA agar+0.001% Congo red demonstrated the elaboration of an as yet undefined fimbrial structure. Isolates of S. enteritidis which were described previously as avirulent and sensitive to environmental stress failed to express SEF17 or produce convoluted colonies. These data indicate an essential role for SEF17, and possibly for another fimbria and flagella, in the generation of the convoluted colonial phenotype. The relationship between virulence and colonial phenotype is discussed.
Resumo:
The elaboration of curli fimbriae by Escherichia coli is associated with the development of a lacy colony morphology when groan on colonisation factor antigen agar at 25 degrees C. Avian colisepticaemia E. coli isolates screened for curliation by this culture technique showed lacy and smooth colonial morphologies and the genetic basis of the non-curliated smooth colonial phenotype was analysed. Two smooth E, coli O78:K80 isolates possessed about 40 copies of the IS1 element within their respective genomes of which one copy insertionally inactivated the csgB gene, the nucleator gene for curli fibril formation. One of these two isolates also possessed a defective rpoS gene which is a known regulator of curli expression. In the day-old chick model, both smooth isolates were as invasive as a known virulent O78:K80 isolate as determined by extent of liver and spleen colonisation post oral inoculation but were less persistent in terms of caecal colonisation. (C) 1999 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
To gain an understanding of the role of fimbriae and flagella in the adherence of Salmonella enterica serotype Enteritidis to inanimate surfaces, the extent of adherence of viable wild-type strains to a polystyrene microtitration plate was determined by a crystal violet staining assay, Elaboration of surface antigens by adherent bacteria was assayed by fimbriae- and flagella-specific ELISAs, Wild-type Enteritidis strains adhered well at 37 degrees C and 25 degrees C when grown in microtitration wells in Colonisation Factor Antigen broth, but not in other media tested, At 37 degrees C, adherent bacteria elaborated copious quantities of SEF14 fimbrial antigen, whereas at 25 degrees C adherent bacteria elaborated copious quantities of SEF17 fimbrial antigen. Non-fimbriate and non-flagellate knock-out mutant strains were also assessed in the adherence assay. Mutant strains unable to elaborate SEF14 and SEF17 fimbriae adhered poorly at 37 degrees C and 25 degrees C, respectively, but adherence was not abolished. Non-motile mutant strains showed reduced adherence whilst type-1, PEF and LPF fimbriae appeared not to contribute to adherence in this assay. These data indicate that SEF17 and SEF14 fimbriae mediate bacterial cell aggregation on inanimate surfaces under appropriate growth conditions.
Resumo:
The biocompatibility of commercially pure (cp) titanium stems from its chemical stability within an organism, due to a fine film of impermeable titanium oxide covering the metal surface, which guarantees its resistance to corrosion. Despite its biocompatible characteristic, this material does not promote the formation of a hydroxyapatite layer, therefore, many research groups have sought to alter the material`s surface, introducing modifications that might influence corrosion resistance. The electrochemical behavior of cp Ti, with hydroxyapatite coating and without hydroxyapatite coating, commonly used in implant materials, was investigated using an artificial saliva solution at 25 degrees C and pH=7.4. In the conditions of the study it was observed that the hydroxyapatite layer influences the properties of corrosion resistance. This study of the behavior of cp Ti with and without hydroxyapatite coating, in naturally aerated artificial saliva solution at 25 degrees C, was based on open circuit potential measurements and potentiodynamic polarization curves. At approximately 1x10(-6) A/cm(2) the potential for cp Ti with and without hydroxyapatite coating begins to increase at a faster rate, but at -74mV (SCE) for coated cp Ti and at 180mV (SCE) for uncoated cp Ti the increase in potential begins to slow. This behavior, characterized by a partial stabilization of current density, indicates that in those potential ranges a protective passive film is formed.
Resumo:
The utilization of protein hydrolysates in food systems is frequently hindered due to their bitterness and hygroscopicity. Spray drying technology could be an alternative for reducing these problems. The aim of this work was to reduce or to mask the casein hydrolysate bitter taste using spray drying and mixtures of gelatin and soy protein isolate (SPI) as carriers. Six formulations were studied: three with 20% of hydrolysate and 80% of mixture (gelatine/SPI at proportions of 50/50, 40/60 and 60/40%) and three with 30% of hydrolysate and 70% of mixture (gelatine/SPI at proportions of 50/50, 40/60 and 60/40%). The spray-dried formulations were evaluated by SEM, hygroscopicity, thermal behavior (DSC), dissolution, and bitter taste, by a trained sensory panel using a paired-comparison test (free samples vs. spray-dried samples); all samples were presented in powder form. SEM analysis showed mostly spherically shaped particles, with many concavities and some particles with pores. All formulations were oil and water compatible and showed lower hygroscopicity values than free casein hydrolysate. At Aw 0.83, the free hydrolysate showed Tg about 25 degrees C lower than the formulations, indicating that the formulations may be more stable at Aw >= 0.65 since the glass transition should be prevented. The sensory panel found the formulations, tasted in the powder form, to be less bitter (P < 0.05) than the free casein hydrolysate. These results indicated that spray drying of casein hydrolysate with mixtures of gelatin and SPI was successful to attenuate the bitterness of casein hydrolysate. Thus, spray drying widens the possibilities of application of casein hydrolysates. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Both gelatin and poly(vinyl alcohol) (PVA) can be cross linked with glutaraldehyde (GLU). In the case of gelatin, the GLU reacts with each e-NH2 functional group of adjacent lysine residues, while for PVA, the GLU reacts with two adjacent hydroxyl groups, forming acetal bridges. Thus it can be considered possible to cross link adjacent macromolecules of gelatin and PVA using GLU. In this context, the aims of this work were the development of biodegradable films based on blends of gelatin and poly(vinyl alcohol) cross linked with GLU, and the characterization of some of their main physical and functional properties. All the films were produced from film-forming solutions (FFS) containing 2 g macromolecules (PVA + gelatin)/100 g FFS, 25 g glycerol/100 g macromolecules, and 4 g GLU (25% solution)/100 g FFS. The FFS were prepared with two concentrations of PVA (20 or 50 g PVA/100 g macromolecules) and two reaction temperatures: 90 or 55 degrees C, applied for 30 min. The films were obtained after drying (30 degrees C/24 h) and conditioning at 25 degrees C and 58% of relative humidity for 7 days, and were then characterized. The results for the color parameters, mechanical properties, phase transitions and infrared spectra showed that some chemical modifications occurred, principally for the gelatin. However, in general, all the characteristics of the films were either typical of films based on blends of these macromolecules without cross linking, or slightly higher. A greater improvement in the properties of this material was probably not observed due to the crystallinity of the PVA, which has a melting point above 90 degrees C. The presence of microcrystals in the polymer chain probably reduced macromolecular mobility, hindering the reaction. Thus more research is necessary to produce biodegradable films with improved properties. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work, cholesterol oxide formation and alteration of fatty acid composition were analyzed in n-3 enriched eggs under different storage periods and two temperatures. The eggs enriched with n-3 fatty acids were stored at 5 or 25 degrees C for 45 days and subsequently boiled or fried. For each treatment, 12 yolks were analyzed every 15 days including time zero. The concentrations of the cholesterol oxides 7-ketocholesterol, 7 beta-hydroxycholesterol, and 7 alpha-hydroxycholesterol increased during the storage period and were higher in fried eggs. Only the 7-ketocholesterol was affected by the storage temperature, and its concentration was highest in eggs stored at 25 degrees C. There was no significant difference in the contents of cholesterol and vitamin E at the different storage periods; however, the concentration of vitamin E decreased with thermal treatment. In addition, the n-3 polyunsaturated fatty acids, especially 18:3, 20:5, and 22:6, were reduced throughout the storage at 5 and 25 degrees C.
Resumo:
Drug resistance and virulence of Mycobacterium tuberculosis are partially related to the pathogen`s antioxidant systems. Peroxide detoxification in this bacterium is achieved by the heme-containing catalase peroxidase and different two-cysteine peroxiredoxins. M. tuberculosis genome also codifies for a putative one-cysteine peroxiredoxin, alkyl hydroperoxide reductase E (MtAhpE). Its expression was previously demonstrated at a transcriptional level, and the crystallographic structure of the recombinant protein was resolved under reduced and oxidized states. Herein, we report that the conformation of MtAhpE changed depending on its single cysteine redox state, as reflected by different tryptophan fluorescence properties and changes in quaternary structure. Dynamics of fluorescence changes, complemented by competition kinetic assays, were used to perform protein functional studies. MtAhE reduced peroxynitrite 2 orders of magnitude faster than hydrogen peroxide (1.9 x 10(7) M(-1) s(-1) vs 8.2 x 10(4) M(-1) s(-1) at pH 7.4 and 25 degrees C, respectively). The latter also caused cysteine overoxidation to sulfinic acid, but at much slower rate constant (40 M(-1) s(-1)). The pK(a) of the thiol in the reduced enzyme was 5.2, more than one unit lower than that of the sulfenic acid in the oxidized enzyme. The pH profile of hydrogen peroxide-mediated thiol and sulfenic acid oxidations indicated thiolate and sulfenate as the reacting species. The formation of sulfenic acid as well as the catalytic peroxidase activity of MtAhpE was demonstrated using the artificial reducing substrate thionitrobenzoate. Taken together, our results indicate that MtAhpE is a relevant component in the antioxidant repertoire of M. tuberculosis probably involved in peroxide and specially peroxynitrite detoxification.
Resumo:
The ternary phase diagram for the orange essential oil (OEO)/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/water system was constructed at 25 degrees C. It indicates a large single phase region, comprising an isotropic water-in-oil (W/O) microemulsion (ME) phase (L(2)), a liquid crystal (LC) (lamellar or hexagonal) and a large unstable emulsion phase that separates in two phases of normal and reverse micelles (L(1) and L(2)). In this communication the properties of the ME are investigated by viscosity, electric conductivity and small angle X-ray scattering (SAXS) indicating that the isotropic ME phase exhibits different behaviors depending on composition. At low water content low viscous ""dry"" surfactant structures are formed, whereas at higher water content higher viscous water droplets are formed. The experimental data allow the determination of the transition from ""dry"" to the water droplet structures within the L(2) phase. SAXS analyses have also been performed for selected LC samples. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work the synthesis of cubic, FDU-1 type, ordered mesoporous silica (OMS) was developed from two types of silicon source, tetraethyl orthosilicate (TEOS) and a less expensive compound, sodium silicate (Na(2)Si(3)O(7)), in the presence of a new triblock copolymer template Vorasurf 504 (EO(38)BO(46)EO(38)). For both silicon precursors the synthesis temperature was evaluated. For TEOS the effect of polymer dissolution in methanol and the acid solution (HCl and HBr) on the material structure was analyzed. For Na(2)Si(3)O(7) the influence of the polymer mass and the hydrothermal treatment time were the explored experimental parameters. The samples were examined by Small Angle X-ray Scattering (SAXS) and Nitrogen Sorption. For both precursors the decrease on the synthesis temperature from ambient, -25 degrees C, to -15 degrees C improved the ordered porous structure. For TEOS, the SAXS results showed that there is an optimum amount of hydrophobic methanol that contributed to dissolve the polymer but did not provoke structural disorder. The less electronegative Br-ions, when compared to Cl-, induced a more ordered porous structure, higher surface areas and larger lattice parameters. For Na(2)Si(3)O(7) the increase on the hydrothermal treatment time as well as the use of an optimized amount of polymer promoted a better ordered porous structure. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The synthetic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol (DMPG), when dispersed in water/NaCl exhibits a complex phase behavior caused by its almost unlimited swelling in excess water. Using deuterium ((2)H)- and phosphorus ((31)P)-NMR we have studied the molecular properties of DMPG/water/NaCl dispersions as a function of lipid and NaCl concentration. We have measured the order profile of the hydrophobic part of the lipid bilayer with deuterated DMPG while the orientation of the phosphoglycerol headgroup was deduced from the (31)P NMR chemical shielding anisotropy. At temperatures > 30 degrees C we observe well-resolved (2)H- and (31)P NMR spectra not much different from other liquid crystalline bilayers. From the order profiles it is possible to deduce the average length of the flexible fatty acyl chain. Unusual spectra are obtained in the temperature interval of 20-25 degrees C, indicating one or several phase transitions. The most dramatic changes are seen at low lipid concentration and low ionic strength. Under these conditions and at 25 degrees C, the phosphoglycerol headgroup rotates into the hydrocarbon layer and the hydrocarbon chains show larger flexing motions than at higher temperatures. The orientation of the phosphoglycerol headgroup depends on the bilayer surface charge and correlates with the degree of dissociation of DMPG-Na(+). The larger the negative surface charge, the more the headgroup rotates toward the nonpolar region.
Resumo:
The purpose of this study was to evaluate the effect of pre-heating resin composite photo-cured with light-curing units (LCU) by FT-IR. Twenty specimens were made in a metallic mold (4 mm diameter x 2 mm thick) from composite resin-Tetric Ceram (R) (Ivoclar/Vivadent) at room temperature (25 degrees C) and pre heated to 37, 54, and 60 degrees C. The specimens were cured with halogen curing light (QTH) and light emitted by diodes (LED) during 40 s. Then, the specimens were pulverized, pressed with KBr and analyzed with FT-IR. The data were submitted to statistical analysis of variance and Kruskal-Wallis test. Study data showed no statistically significant difference to the degree of conversion for the different light curing units (QTH and LED) (p > 0.05). With the increase of temperature there was significant increase in the degree of conversion (p < 0.05). In this study were not found evidence that the light curing unit and temperature influenced the degree of conversion.
Resumo:
The structural stability of a peroxidase, a dimeric protein from royal palm tree (Roystonea regia) leaves, has been characterized by high-sensitivity differential scanning calorimetry, circular dichroism, steady-state tryptophan fluorescence and analytical ultracentifugation under different solvent conditions. It is shown that the thermal and chemical (using guanidine hydrochloride (Gdn-HCl)) folding/unfolding of royal palm tree peroxidase (RPTP) at pH 7 is a reversible process involving a highly cooperative transition between the folded dimer and unfolded monomers, with a free stabilization energy of about 23 kcal per mol of monomer at 25 degrees C. The structural stability of RPTP is pH-dependent. At pH 3, where ion pairs have disappeared due to protonation, the thermally induced denaturation of RPTP is irreversible and strongly dependent upon the scan rate, suggesting that this process is under kinetic control. Moreover, thermally induced transitions at this pH value are dependent on the protein concentration, allowing it to be concluded that in solution RPTP behaves as dimer, which undergoes thermal denaturation coupled with dissociation. Analysis of the kinetic parameters of RPTP denaturation at pH 3 was accomplished on the basis of the simple kinetic scheme N ->(k) D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state, and thermodynamic information was obtained by extrapolation of the kinetic transition parameters to an infinite heating rate. Obtained in this way, the value of RPTP stability at 25 degrees C is ca. 8 kcal per mole of monomer lower than at pH 7. In all probability, this quantity reflects the contribution of ion pair interactions to the structural stability of RPTP. From a comparison of the stability of RPTP with other plant peroxidases it is proposed that one of the main factors responsible for the unusually high stability of RPTP which enhances its potential use for biotechnological purposes, is its dimerization. (c) 2008 Elsevier Masson SAS. All rights reserved.