995 resultados para 209-1269A


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents sulfide mineral occurrence, abundance, and composition in samples from hydrothermally altered peridotite and gabbro recovered during Ocean Drilling Program (ODP) Leg 209 from south of the 15°20'N Fracture Zone on the Mid-Atlantic Ridge at Site 1268. Most of the sulfide minerals occur in veins and halos around veins in serpentinized peridotite. The only sulfide phases reported that occur in proximity to gabbro are those associated with a mafic intrusion into serpentinized peridotite. Sulfide mineral species change predictably downsection but are perturbed coincident with a breccia interpreted to be generated by intrusion of a gabbroic magma. The general downhole trend suggests sulfide mineral precipitation in conditions with decreasing sulfur and oxygen fugacity. Sulfide minerals that indicate precipitation at relatively higher sulfur and oxygen fugacity occur in the central core of the intrusion breccia. Sphalerite makes a fleeting appearance in the sulfide mineral assemblage in samples from the lower part of the intrusion breccia. Strongly contrasting pyrite compositions suggest at least two episodes of pyrite precipitation, but there is no clear morphological distinction between phases. Heazelwoodite, tentatively identified in shipboard examinations, could not be confirmed in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small-scale shear zones are present in drillcore samples of abyssal peridotites from the Mid-Atlantic ridge at 15°20'N (Ocean Drilling Program Leg 209). The shear zones act as pathways for both evolved melts and hydrothermal fluids. We examined serpentinites directly adjacent to such zones to evaluate chemical changes resulting from melt-rock and fluid-rock interaction and their influence on the mineralogy. Compared to fresh harzburgite and melt-unaffected serpentinites, serpentinites adjacent to melt-bearing veins show a marked enrichment in rare earth elements (REE), strontium and high field strength elements (HFSE) zirconium and niobium. From comparison with published chemical data of variably serpentinized and melt-unaffected harzburgites, one possible interpretation is that interaction with the adjacent melt veins caused the enrichment in HFSE, whereas the REE contents might also be enriched due to hydrothermal processes. Enrichment in alumina during serpentinization is corroborated by reaction path models for interaction of seawater with harzburgite-plagiogranite mixtures. These models explain both increased amounts of alumina in the serpentinizing fluid for increasing amounts of plagiogranitic material mixed with harzburgite, and the absence of brucite from the secondary mineralogy due to elevated silica activity. By destabilizing brucite, nearby melt veins might fundamentally influence the low-temperature alteration behaviour of serpentinites. Although observations and model results are in general agreement, due to absence of any unaltered protolith a quantification of element transport during serpentinization is not straightforward.