956 resultados para 1D and 2D NMR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new prenylated pterocarpan, named morisianine, was isolated together with the known secondary metabolites erybraedin C, psoralen and angelicin from the seeds of Bituminaria morisiana. The structures of the compounds were elucidated mainly by 1D and 2D NMR experiments as well as mass spectrometry. The new compound was subjected to cytotoxicity screening against a panel of human cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new diacetylenic spiroketal enol ethers named flosculins A (1), B (2), and C (3), along with five known compounds (4-8) of the same structural class, were isolated from the leaves of Plagius flosculosus. The structures were deduced by extensive 1D and 2D NMR spectroscopy and mass spectrometry. All isolated compounds exhibited significant cytotoxic activity against leukemia cells (Jurkat T and HL-60). Compounds 5-8 induced apoptosis in HL-60 cells with corresponding IC(50) values ranging from 4 to 6 microM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xanthones and 1,2,3-triazoles are known to exhibit several biological, pharmacological and biocidal properties[1]. The potential applications of these two classes of heterocycles led us to develop new strategies to synthesize xanthone-1,2,3-triazole dyads, aiming to get potentially improved therapeutic agents[2]. With this rational in mind we designed and synthesized novel chromone derivatives 1a-d to be used as building motifs and to explore the reactivity of the two unsaturated systems (the diene and the alkyne). In the present communication we will present a new synthetic route towards the synthesis of xanthone-1,2,3-triazole dyads 7a-d using consecutively the azide-alkyne Huisgen 1,3-dipolar cycloaddition and Diels-Alder reaction. Our approach involves the synthesis chromone-triazole derivatives 2a-d using the reaction of 1a-d with sodium azide, followed by the methylation of the NH of the triazole moiety. The methylation afforded three isomers 3a-d, 4a-d and 5a-d, as expected. The major isomers 3a-d were used in the Diels-Alder reaction with N-methylmaleimide, and the adducts obtained 6a-d were oxidized to afford the xanthone-1,2,3-triazole dyads 7a-d. All the synthetic details as well as the structural characterization (by 1D and 2D NMR studies) of the new synthesised compounds will be presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of multi-target drugs for treating complex multifactorial diseases constitutes an active research ield. This kind of drugs has gained much importance as alternative strategy to combination therapy (“cocktail drugs”).1 A common way to design them brings together two different pharmacophores in one single molecule (so-called dyads). Following this idea and being aware that xanthones2 and 1,2,3-triazoles3 possess important pharmacological properties, we combined these two heterocycles in one molecule to create new dyads with improved therapeutic potential. In this work, new xanthone-1,2,3-triazole dyads were prepared from novel (E)-2-(4-arylbut-1-en-3-yn-1-yl)chromones by two different approaches to evaluate their eficiency and sustainability. Both methodologies involved Diels-Alder reactions to build the xanthone core, which were optimized using microwave irradiation as alternative heating method, and 1,3-dipolar cycloadditions to insert the 1,2,3-triazole moiety (Figure 1).4 All final and intermediate compounds were fully characterized by 1D and 2D NMR techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wydział Chemii: Zakład Syntezy i Struktury Związków Organicznych

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D ¹H, 13C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of ¹H and 13C NMR chemical shift assignments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NMR can be considered a multi-scale multidimensional technology in the sense that it provides both spatial insight at macroscopic (MRI) or microscopic level (relaxometry), together with chemical characterization (HR-MAS). In this study 296 apples (from 4 cultivars) were MRI screened (20 slices per fruit) among which 7 fruits were used for metabolomic study by 1H HR MAS in order to assess various chemical shifts: malic acid, sucrose, glucose, fructose and ethanol. On the first season, tissue samples were taken from the sound and affected apples (near the core, centre and outer part of the mesocarp) belonging to sound and affected locations, while on the second season, tissue samples were focused on the comparison between sound and affected tissue. Beside, MRI and 2D non-destructive relaxometry (on whole fruits, and localized tissue) where performed on 72 and 12 apples respectively in order to compare features at macroscopic (tissue) and microscopic (subcellular) level. HR MAS shows higher content of ?-glucose, ?-glucose, malic acid and aromatic compounds in watercore affected tissues from both seasons, while sound tissue reflects higher sucrose. Microscopic (subcellular) degradation of tissue varies according to disorder development and is in good accordance with macroscopic characterization with MRI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synthesis and total NMR characterization of 5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid-3-[[[(4''-nitrophenoxy)carbonyl]oxy]-methyl]-8-oxo-7[(2-thienyloxoacetyl)amino]-diphenylmethyl ester-5-dioxide (5), a new cephalosporin derivative. This compound can be used as the carrier of a wide range of drugs containing an amino group. The preparation of the intermediate product, 5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid-3-[methyl-4-(6-methoxyquinolin-8-ylamino) pentylcarbamate]-8-oxo-7-[(2-thienyloxoacetyl)amino]-diphenylmethyl ester-5-dioxide (6), as well as the synthesis of the antimalarial primaquine prodrug 5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid-3-[methyl-4-(6-methoxyquinolin-8-ylamino) pentylcarbamate]-8-oxo-7-[(2-thienyloxoacetyl)amino]-5-dioxide (7) are also described, together with their total H-1- and C-13-NMR assignments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical composition of the essential oil and hydrolates of Campomanesia viatoris Landrum were investigated by gas chromatography/mass spectrometry (GC/MS) and a GC flame ionization detector (GC-FID). The major constituents were tasmanone (70.50, essential oil; 74.73%, hydrolate), flavesone (12.77, essential oil; 12.24%, hydrolate) and agglomerone (6.79, essential oil; 10.84%, hydrolate). Tasmonone was isolated and its structure was characterized by spectrometric analysis, specifically 1D and 2D nuclear magnetic resonance (NMR) and mass spectrometry (MS). These findings supports the quimiotaxonomic relationship with Campomanesia and Eucalyptus genera.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for studying structural and dynamical properties of disordered and partially ordered materials, such as glasses, polymers, liquid crystals, and biological materials. In particular, twodimensional( 2D) NMR methods such as ^^C-^^C correlation spectroscopy under the magicangle- spinning (MAS) conditions have been used to measure structural constraints on the secondary structure of proteins and polypeptides. Amyloid fibrils implicated in a broad class of diseases such as Alzheimer's are known to contain a particular repeating structural motif, called a /5-sheet. However, the details of such structures are poorly understood, primarily because the structural constraints extracted from the 2D NMR data in the form of the so-called Ramachandran (backbone torsion) angle distributions, g{^,'4)), are strongly model-dependent. Inverse theory methods are used to extract Ramachandran angle distributions from a set of 2D MAS and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) data. This is a vastly underdetermined problem, and the stability of the inverse mapping is problematic. Tikhonov regularization is a well-known method of improving the stability of the inverse; in this work it is extended to use a new regularization functional based on the Laplacian rather than on the norm of the function itself. In this way, one makes use of the inherently two-dimensional nature of the underlying Ramachandran maps. In addition, a modification of the existing numerical procedure is performed, as appropriate for an underdetermined inverse problem. Stability of the algorithm with respect to the signal-to-noise (S/N) ratio is examined using a simulated data set. The results show excellent convergence to the true angle distribution function g{(j),ii) for the S/N ratio above 100.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary Reasons for performing study: Metabonomics is emerging as a powerful tool for disease screening and investigating mammalian metabolism. This study aims to create a metabolic framework by producing a preliminary reference guide for the normal equine metabolic milieu. Objectives: To metabolically profile plasma, urine and faecal water from healthy racehorses using high resolution 1H-NMR spectroscopy and to provide a list of dominant metabolites present in each biofluid for the benefit of future research in this area. Study design: This study was performed using seven Thoroughbreds in race training at a single time-point. Urine and faecal samples were collected non-invasively and plasma was obtained from samples taken for routine clinical chemistry purposes. Methods: Biofluids were analysed using 1H-NMR spectroscopy. Metabolite assignment was achieved via a range of 1D and 2D experiments. Results: A total of 102 metabolites were assigned across the three biological matrices. A core metabonome of 14 metabolites was ubiquitous across all biofluids. All biological matrices provided a unique window on different aspects of systematic metabolism. Urine was the most populated metabolite matrix with 65 identified metabolites, 39 of which were unique to this biological compartment. A number of these were related to gut microbial host co-metabolism. Faecal samples were the most metabolically variable between animals; acetate was responsible for the majority (28%) of this variation. Short chain fatty acids were the predominant features identified within this biofluid by 1H-NMR spectroscopy. Conclusions: Metabonomics provides a platform for investigating complex and dynamic interactions between the host and its consortium of gut microbes and has the potential to uncover markers for health and disease in a variety of biofluids. Inherent variation in faecal extracts along with the relative abundance of microbial-mammalian metabolites in urine and invasive nature of plasma sampling, infers that urine is the most appropriate biofluid for the purposes of metabonomic analysis.