993 resultados para 162-907C


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen and carbon isotope records are presented for the benthic foraminifer Cibicidoides wuellerstorfi from upper middle through lower upper Miocene (11.6-8.2 Ma) sediments recovered at intermediate water depth (1134 m) at Ocean Drilling Program Site 982 on Rockall Plateau. Oxygen isotopic values generally lighter than those for the Holocene indicate significantly warmer intermediate waters and/or less global ice volume during the late middle to early late Miocene than at the present. The most depleted oxygen isotope values occurred at around 10.5 Ma. After this time a long-term increase in d18O suggests a gradual increase in global ice volume and/or cooling of intermediate waters during the late Miocene. Comparison of the intermediate depth benthic foraminiferal carbon isotope record from Site 982 and records from various North Atlantic deep sites shows that intermediate waters were generally better ventilated than deep waters between 11.6 and 9.6 Ma. During this time period, increased ventilation of intermediate waters was linked to cooling or the build up of polar ice caps. The Mi events originally proposed by Miller et al. (1991, doi:10.1029/90JB02015) and Wright and Miller (1992, doi:10.2973/odp.proc.sr.120.193.1992) are difficult to identify with certainty in sediments sampled at high resolution (<10**4 year). Comparison of the high-resolution benthic d18O records from ODP Site 982 with the low-resolution benthic d18O record from Monte Gibliscemi (Mediterranean) show that Mi events, if real, may not be of importance as a stratigraphic tool in upper Miocene sedimentary sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multisensor track data, including magnetic susceptibility, gamma-ray attenuation porosity evaluator (GRAPE) wet bulk density, and natural gamma emission, were collected on all cores recovered during Ocean Drilling Program Leg 162. Data from the upper Pliocene and lower Pleistocene of Sites 981 and 984 are here compared to results from analyses of a limited set of discrete samples, including benthic foraminiferal isotopic composition, grain size, carbonate content, abundance of foraminifers and lithic particles, and clay mineralogy. Natural gamma emission most closely monitors the input of felsic terrigenous material to these two sites. Magnetic susceptibility also tracks felsic terrigenous input at Site 981 but appears to reflect a separate, more mafic, terrigenous component at Site 984. The GRAPE record does not correlate well with any discretely measured variable at Sites 981 or 984.