986 resultados para 131-808G


Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the Western Nankai Trough subduction zone at ODP Site 808, chemical concentration and isotopic ratio depth profiles of D, O, Sr, and He do not support fluid flow along the décollement nor at the frontal thrust. They do, however, support continuous or periodic lateral fluid flow: (1) at the base of the Shikoku Basin volcanic-rich sediment member, situated ~140 m above the décollement, and particularly (2) below the décollement. The latter must have been rather vigorous, as it was capable of transporting clay minerals over great distances. The fluid at ~140 m above the décollement is characterized by lower than seawater concentrations of Cl- (>=18% seawater dilution). It is 18O-rich and D-poor and has a non-radiogenic, oceanic, or volcanic arc Sr isotopic signature. It originates from "volcanic" clay diagenesis. The fluid below the décollement has also less Cl- than seawater (>20% dilution), is more enriched in 18O and depleted in D than fluid, but its Sr isotopic signature is radiogenic, continentalterrigenous. The source of this fluid is located arcward, is deep-seated, where illitization of the subducted clay minerals, a mixture of terrigenous and volcanic clays, occurs. The 3He/4He ratio below the décollement points to an ~25% mantle contribution. The nature of the physical and chemical discontinuities across the décollement suggests it is overpressured and is forming a leaky "dynamic seal" for fluid flow. In contrast with the situation at Barbados and Peru, where the major tectonic features are mineralized, here, although the complex is extremely fractured and faulted, mineralized macroscopic veins, fractures, and faults are absent. Instead, mineralized microstructures are widespread, indicating a diffuse mode of dewatering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microscopic studies reveal a predominance of terrestrial organic matter in sediments of Site 808. Terrestrial vitrinite and inertinite are more abundant (73% to 100%) than marine organic matter (alginite, 0% to 27%), which increases from open oceanic deposits of the Shikoku Basin sediments to sediments of the outer trench wedge. The abundance of terrestrial organic matter is also reflected through carbon isotope values of -23 per mil to -25.9 per mil. Mass accumulation rates of organic carbon are low in hemipelagic sediments of the Shikoku Basin (<0.2 g/cm**2/k.y.) but increase significantly in sediments of the Nankai Trench (0.2 to 1.7 g/cm**2/k.y.). Although the organic mass accumulation is high in sediments of the Nankai Trench, a comparison of sedimentation rates and total organic carbon suggests relative dilution of organic carbon through turbidite flows. Calculated marine paleoproductivity of organic carbon is low in sediments of the open ocean (Shikoku Basin) and increases closer to the shore (Nankai Trench). Thermal evolution of organic matter is obtained from vitrinite reflectance measurements. Two populations of vitrinites have been observed between 600 and 1234 mbsf. Reflectance values change with increasing depth and temperature in both groups of vitrinite (0.3% to 0.68% in group 1; 0.6% to 1% in group 2).