923 resultados para 130208 Mathematics and Numeracy Curriculum and Pedagogy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kindergartens in China offer structured full-day programs for children aged 3-6. Although formal schooling does not commence until age 7, the mathematics program in kindergartens is specifically focused on developing young children’s facility with simple addition and subtraction. This study explored young Chinese children’s strategies for solving basic addition facts as well as their intuitive understanding of addition via interview methods. Results indicate a strong impact that teacher-directed teaching methods have on young children’s cognitions in relation to addition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although various studies have shown that groups are more productive than individuals in complex mathematical problem solving, not all groups work together cooperatively. This review highlights that addressing organisational and cognitive factors to help scaffold group mathematical problem solving is necessary but not sufficient. Successful group problem solving also needs to incorporate metacognitive factors in order for groups to reflect on the organisational and cognitive factors influencing their group mathematical problem solving.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss our current efforts to develop and implement an exploratory, discovery mode assessment item into the total learning and assessment profile for a target group of about 100 second level engineering mathematics students. The assessment item under development is composed of 2 parts, namely, a set of "pre-lab" homework problems (which focus on relevant prior mathematical knowledge, concepts and skills), and complementary computing laboratory exercises which are undertaken within a fixed (1 hour) time frame. In particular, the computing exercises exploit the algebraic manipulation and visualisation capabilities of the symbolic algebra package MAPLE, with the aim of promoting understanding of certain mathematical concepts and skills via visual and intuitive reasoning, rather than a formal or rigorous approach. The assessment task we are developing is aimed at providing students with a significant learning experience, in addition to providing feedback on their individual knowledge and skills. To this end, a noteworthy feature of the scheme is that marks awarded for the laboratory work are primarily based on the extent to which reflective, critical thinking is demonstrated, rather than the amount of CBE-style tasks completed by the student within the allowed time. With regard to student learning outcomes, a novel and potentially critical feature of our scheme is that the assessment task is designed to be intimately linked to the overall course content, in that it aims to introduce important concepts and skills (via individual student exploration) which will be revisited somewhat later in the pedagogically more restrictive formal lecture component of the course (typically a large group plenary format). Furthermore, the time delay involved, or "incubation period", is also a deliberate design feature: it is intended to allow students the opportunity to undergo potentially important internal re-adjustments in their understanding, before being exposed to lectures on related course content which are invariably delivered in a more condensed, formal and mathematically rigorous manner. In our presentation, we will discuss in more detail our motivation and rationale for trailing such a scheme for the targeted student group. Some of the advantages and disadvantages of our approach (as we perceived them at the initial stages) will also be enumerated. In a companion paper, the theoretical framework for our approach will be more fully elaborated, and measures of student learning outcomes (as obtained from eg. student provided feedback) will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents one approach to addressing the important issue of interdisciplinarity in the primary school mathematics curriculum, namely, through realistic mathematical modelling problems. Such problems draw upon other disciplines for their contexts and data. The article initially considers the nature of modelling with complex systems and discusses how such experiences differ from existing problem-solving activities in the primary mathematics curriculum. Principles for designing interdisciplinary modelling problems are then addressed, with reference to two mathematical modelling problems— one based in the scientific domain and the other in the literary domain. Examples of the models children have created in solving these problems follow. A reflection on the differences in the diversity and sophistication of these models raises issues regarding the design of interdisciplinary modelling problems. The article concludes with suggested opportunities for generating multidisciplinary projects within the regular mathematics curriculum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes some of the issues that teachers might encounter when scaffolding students’ thinking during mathematical investigations. It describes four episodes where a teacher’s scaffolding failed to support students’ mathematical thinking and explores the reasons why the scaffolding was ineffective. Understanding what is ineffective and why is one way to improve pedagogical practice. As a background to these episodes, we first provide an overview of the mathematical investigation. Our paper concludes with some recommendations for judicious scaffolding during investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study explored kindergarten students’ intuitive strategies and understandings in probabilities. The paper aims to provide an in depth insight into the levels of probability understanding across four constructs, as proposed by Jones (1997), for kindergarten students. Qualitative evidence from two students revealed that even before instruction pupils have a good capacity of predicting most and least likely events, of distinguishing fair probability situations from unfair ones, of comparing the probability of an event in two sample spaces, and of recognizing conditional probability events. These results contribute to the growing evidence on kindergarten students’ intuitive probabilistic reasoning. The potential of this study for improving the learning of probability, as well as suggestions for further research, are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the development of student functional thinking during a teaching experiment that was conducted in two classrooms with a total of 45 children whose average age was nine years and six months. The teaching comprised four lessons taught by a researcher, with a second researcher and classroom teacher acting as participant observers. These lessons were designed to enable students to build mental representations in order to explore the use of function tables by focusing on the relationship between input and output numbers with the intention of extracting the algebraic nature of the arithmetic involved. All lessons were videotaped. The results indicate that elementary students are not only capable of developing functional thinking but also of communicating their thinking both verbally and symbolically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strategies employed by 130 Grade 5 Brisbane students in comparing decimal numbers which have the same whole-number part were compared with those identified in similar studies conducted in the USA, France and Israel. Three new strategies were identified. Similar to USA results, the most common comparison errors stemmed from the incorrect whole-number strategy in which length is confused with size. The findings of this present study tend to support Resnick et al.’s (1989) hypothesis that the introduction of decimal-fraction recording before common-fraction recording seems to promote better comparison of decimal numbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on an intervention study planned to help Year 6 students construct the multiplicative structure underlying decimal-number numeration. Three types of intervention were designed from a numeration model developed from a large study of 173 Year 6 students’ decimal-number knowledge. The study found that students could acquire multiplicative structure as an abstract schema if instruction took account of prior knowledge as informed by the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematical problem solving has been the subject of substantial and often controversial research for several decades. We use the term, problem solving, here in a broad sense to cover a range of activities that challenge and extend one’s thinking. In this chapter, we initially present a sketch of past decades of research on mathematical problem solving and its impact on the mathematics curriculum. We then consider some of the factors that have limited previous research on problem solving. In the remainder of the chapter we address some ways in which we might advance the fields of problem-solving research and curriculum development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we explore young children's development of mathematical knowledge and reasoning processes as they worked two modelling problems (the Butter Beans Problem and the Airplane Problem). The problems involve authentic situations that need to be interpreted and described in mathematical ways. Both problems include tables of data, together with background information containing specific criteria to be considered in the solution process. Four classes of third-graders (8 years of age) and their teachers participated in the 6-month program, which included preparatory modelling activities along with professional development for the teachers. In discussing our findings we address: (a) Ways in which the children applied their informal, personal knowledge to the problems; (b) How the children interpreted the tables of data, including difficulties they experienced; (c) How the children operated on the data, including aggregating and comparing data, and looking for trends and patterns; (c) How the children developed important mathematical ideas; and (d) Ways in which the children represented their mathematical understandings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An educational priority of many nations is to enhance mathematical learning in early childhood. One area in need of special attention is that of statistics. This paper argues for a renewed focus on statistical reasoning in the beginning school years, with opportunities for children to engage in data modelling activities. Such modelling involves investigations of meaningful phenomena, deciding what is worthy of attention (i.e., identifying complex attributes), and then progressing to organising, structuring, visualising, and representing data. Results are reported from the first year of a three-year longitudinal study in which three classes of first-grade children and their teachers engaged in activities that required the creation of data models. The theme of “Looking after our Environment,” a component of the children’s science curriculum at the time, provided the context for the activities. Findings focus on how the children dealt with given complex attributes and how they generated their own attributes in classifying broad data sets, and the nature of the models the children created in organising, structuring, and representing their data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article examines one approach to promoting creative and flexible use of mathematical ideas within an interdisciplinary context in the primary curriculum, namely, through modelling. Three classes of fifth-grade children worked on a modelling problem, The First Fleet (Australia’s settlement), situated within the curriculum domains of science and studies of society and environment. Reported here are the cycles of development displayed by one group of children as they worked the problem, together with the range of models created across the classes. Children developed mathematisation processes that extended beyond their regular curriculum, including identifying and prioritising key problem elements, exploring relationships among elements, quantifying qualitative data, ranking and aggregating data, and creating and working with weighted scores. Aspects of Goldin’s (2000, 2007) affective structures also appeared to play an important role in the children's mathematical developments.