991 resultados para 114-698A
Resumo:
Calcareous nannofossil assemblages were studied from Sites 699 and 703, drilled during ODP Leg 114 to the west and east, respectively, of the Mid-Atlantic Ridge in the subantarctic South Atlantic Ocean. Recovery at the two sites consists of an almost continuous sequence of upper Eocene-lower Oligocene sediments. This study describes the calcareous nannofossil assemblages at the transition between the Eocene and Oligocene and correlates these assemblages with those described in lower latitude sections. Quantitative analyses were performed on several important taxa in order to improve the biostratigraphic resolution and permit some paleoenvironmental interpretations. Several discrepancies were noted between the two sites and between the Eocene and Oligocene assemblages. The Eocene assemblages show a great number of species and warmer water conditions; the early Oligocene assemblages are less diversified and are indicative of cooler conditions. The Eocene/Oligocene boundary was not defined by planktonic foraminifers because of the strong dissolution, poor recovery, and drilling disturbances. On the other hand, the calcareous nannofossil assemblage allowed recognition of the interval where the Eocene/Oligocene boundary can possibly be placed.
Resumo:
A number of neogenic opaline structures, not previously reported in the literature, as well as other neogenic phases are described from four Oligocene to Pliocene biosiliceous sediment samples from Hole 699A. The possible influence of microbes on the formation or the morphology of some of them is discussed. The samples, which are early Pliocene, early to middle Miocene, and late Oligocene (two) in age, were histologically fixed aboard ship upon retrieval. Investigations of the samples used SEM (with Edax/Tracor) and XRD methods. Diagenesis has affected all four samples, but the most extensive development of neoformed structures occurs in the Miocene and uppermost Oligocene samples, where microbial filaments (0.05 to 10 ?m long), microbial colonies, and siliceous microhemispheroids (0.2 to 0.7 µm diameter) were observed. The latter encrust filaments, diatoms, and detrital grains to varying degrees. Other neoformed structures include (1) flakes formed by coalesced microhemispheroids, some of which are guided by short, stubby filaments, which occur only in the Miocene and uppermost Oligocene samples, and (2) flakes characterized by smooth or microfissured surfaces, which grow on diatom frustules and in pore spaces and have a more widespread distribution. The XRD data indicate possible cristobalite formation in the Miocene and uppermost Oligocene samples; we believe that the neoformed opaline structures (encrusted filaments and microhemispheroids) may represent an early phase of opal-CT. The timing of neoformation of most of these features appears to have been fairly recent, continuing even at the time of sampling. There appears to be no direct correlation of this incipient, lower Miocene-uppermost Oligocene diagenetic layer and the pore-water chemistry profiles; a massive increase in shear strength in these sediments, however, may indicate some cementation. Smectite was identified by XRD as the most prominent clay mineral in these generally clay-poor sediments. Honeycombed minerals with filamentous edges, which could correspond to smectite, were observed with SEM in the pore spaces.
Resumo:
Subducted sediments play an important role in arc magmatism and crust-mantle recycling. Models of continental growth, continental composition, convergent margin magmatism and mantle heterogeneity all require a better understanding of the mass and chemical fluxes associated with subducting sediments. We have evaluated subducting sediments on a global basis in order to better define their chemical systematics and to determine both regional and global average compositions. We then use these compositions to assess the importance of sediments to arc volcanism and crust-mantle recycling, and to re-evaluate the chemical composition of the continental crust. The large variations in the chemical composition of marine sediments are for the most part linked to the main lithological constituents. The alkali elements (K, Rb and Cs) and high field strength elements (Ti, Nb, Hf, Zr) are closely linked to the detrital phase in marine sediments; Th is largely detrital but may be enriched in the hydrogenous Fe-Mn component of sediments; REE patterns are largely continental, but abundances are closely linked to fish debris phosphate; U is mostly detrital, but also dependent on the supply and burial rate of organic matter; Ba is linked to both biogenic barite and hydrothermal components; Sr is linked to carbonate phases. Thus, the important geochemical tracers follow the lithology of the sediments. Sediment lithologies are controlled in turn by a small number of factors: proximity of detrital sources (volcanic and continental); biological productivity and preservation of carbonate and opal; and sedimentation rate. Because of the link with lithology and the wealth of lithological data routinely collected for ODP and DSDP drill cores, bulk geochemical averages can be calculated to better than 30% for most elements from fewer than ten chemical analyses for a typical drill core (100-1000 m). Combining the geochemical systematics with convergence rate and other parameters permits calculation of regional compositional fluxes for subducting sediment. These regional fluxes can be compared to the compositions of arc volcanics to asses the importance of sediment subduction to arc volcanism. For the 70% of the trenches worldwide where estimates can be made, the regional fluxes also provide the basis for a global subducting sediment (GLOSS) composition and flux. GLOSS is dominated by terrigenous material (76 wt% terrigenous, 7 wt% calcium carbonate, 10 wt% opal, 7 wt% mineral-bound H2O+), and therefore similar to upper continental crust (UCC) in composition. Exceptions include enrichment in Ba, Mn and the middle and heavy REE, and depletions in detrital elements diluted by biogenic material (alkalis, Th, Zr, Hf). Sr and Pb are identical in GLOSS and UCC as a result of a balance between dilution and enrichment by marine phases. GLOSS and the systematics of marine sediments provide an independent approach to the composition of the upper continental crust for detrital elements. Significant discrepancies of up to a factor of two exist between the marine sediment data and current upper crustal estimates for Cs, Nb, Ta and Ti. Suggested revisions to UCC include Cs (7.3 ppm), Nb (13.7 ppm), Ta (0.96 ppm) and TiO2 (0.76 wt%). These revisions affect recent bulk continental crust estimates for La/Nb and U/Nb, and lead to an even greater contrast between the continents and mantle for these important trace element ratios. GLOSS and the regional sediment data also provide new insights into the mantle sources of oceanic basalts. The classical geochemical distinction between 'pelagic' and 'terrigenous' sediment sources is not valid and needs to be replaced by a more comprehensive understanding of the compositional variations in complete sedimentary columns. In addition, isotopic arguments based on surface sediments alone can lead to erroneous conclusions. Specifically, the Nd/Hf ratio of GLOSS relaxes considerably the severe constraints on the amount of sediment recycling into the mantle based on earlier estimates from surface sediment compositions.