992 resultados para 113-689B


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An almost continuous Upper Cretaceous through Pleistocene biogenic sediment section was recovered from two sites on Maud Rise, a volcanic edifice in the Weddell Sea, off eastern Antarctica. Calcium carbonate values were determined for 1100 closely spaced samples using a Coulometrics CO2 Coulometer. Following a very brief decrease in the percentage of calcium carbonate immediately above the Cretaceous/Tertiary boundary, values remain high (~70%-80%), throughout most of the Paleocene, with variations primarily attributed to changes in the relative abundance of terrigenous and biogenic components. A small general decrease in calcium carbonate is observed from the upper Paleocene to lower middle Eocene. Eocene values continue to show small to moderate fluctuations. These fluctuations become more pronounced in the Oligocene as biosiliceous and carbonate sediments are mixed and interlayered. A distinct decrease in the calcium carbonate component is observed in the upper Oligocene through lower middle Miocene. Calcium carbonate becomes dominant again in the middle and lower upper Miocene, followed by almost exclusive biosiliceous sedimentation until the Pleistocene, where foraminifer-dominated calcareous ooze was recovered. Interpretation of this data will be carried out when a more finalized chronostratigraphy for the sequence has been produced.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Siliceous sponge spicules are present throughout many of the sections drilled by Ocean Drilling Program Leg 113. The assemblages consist mostly of monaxons and occur in Eocene to Pleistocene strata. Occurrences of the various spicule types are tabulated for Sites 689, 693, 694, 695, 696, and 697.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From January to March 1987, heat flow measurements were tried at four sites (Sites 689, 690, 695, and 696) during ODP Leg 113, in the Weddell Sea, Antarctica. At Site 690 (Maud Rise), a convex upward shaped temperature vs. depth profile was observed. This profile cannot be explained by steady-state conduction through solid materials only. We conclude that the minimum heat flow value at Site 690 is 45 mW/m2. A prominent bottom simulating reflector (BSR) was observed at 600 mbsf at Site 695. However, the observed temperature is too high to explain the BSR as a gas hydrate. The origin of the BSR remains unknown, although it is probably of biogenic origin as observed in the Bering Sea during DSDP Leg 19. After correcting for the effects of sedimentation, heat flow values at Sites 695 and 696 are 69 and 63 mW/m2, respectively. Furthermore, we compiled heat flow data south of 50°S. In the Weddell Sea region, the eastern part shows relatively low heat flow in comparison with the western part, with the boundary between them at about 15°W longitude.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon isotope measurements were made on bulk sediments from the well preserved calcareous sequences recovered at ODP Sites 689 and 690 on the Maud Rise, Weddell Sea, Antarctica. The very positive delta13C values that characterize the late Paleocene and the rapid trend toward lighter values in the early Eocene established in other sites are clearly recorded here and may be of value for long-distance stratigraphic correlation. However, values in the late Eocene are significantly more positive than have been reported from other areas. The general pattern of the records from Sites 689 and 690 is sufficiently unlike those previously reported from lower latitudes that we suggest that carbon isotope data should be used only with considerable caution for correlating sequences from such high latitudes with lower latitude records.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oxygen and carbon isotopic composition has been measured for numerous Paleogene planktonic foraminifer species from Maud Rise, Weddell Sea (ODP Sites 689 and 690), the first such results from the Antarctic. The results provide information about large-scale changes in the evolution of temperatures, seasonally, and structure of the upper water column prior to the development of a significant Antarctic cryosphere. The early Paleocene was marked by cooler surface-water conditions compared to the Cretaceous and possibly a less well developed thermocline. The late Paleocene and early Eocene saw the expansion of the thermocline as Antarctic surface waters became warm-temperate to subtropical. The late Paleocene to early Eocene thermal maximum was punctuated by two brief excursions during which time the entire Antarctic water column warmed and the meridional temperature gradient was reduced. The first of these excursions occurred at the Paleocene/Eocene boundary, in association with a major extinction in deep sea benthic foraminifers. The second excursion occurred within the early Eocene at ~54.0 Ma. These excursions are of global importance and represent the warmest intervals of the entire Cenozoic. The excursions were associated with fundamental changes in deep-water circulation and global heat transport. The thermal maximum of the early Eocene ended with the initiation of a long-term cooling trend at 52.0 Ma. This cooling trend was associated with reduced seasonality, and diminished structure and/or duration of the seasonal thermocline. The cooling trend was punctuated by three major cooling steps at 43.0, 40.0, and -36.0 Ma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cores from Sites 689 and 690 of Ocean Drilling Program Leg 113 provide the most continuous Paleocene and Eocene sequence yet recovered by deep sea drilling in the high latitudes of the Southern Ocean. The nannofossil-foraminifer oozes and chalks recovered from Maud Rise at 65°S in the Weddell Sea provide a unique opportunity for biostratigraphic study of extremely high southern latitude carbonate sediments. The presence of warm water index fossils such as the discoasters and species of the Tribrachiatus plexus facilitate the application of commonly used low latitude calcareous nannofossil biostratigraphic zonation schemes for the upper Paleocene and lower Eocene intervals. In the more complete section at Site 690, Okada and Bukry Zones CP1 through CP10 can be identified for the most part with the possible exception of Zone CP3. Several hiatuses are present in the sequence at Site 689 with the most notable being at the Cretaceous/Tertiary and Paleocene/Eocene boundaries. Though not extremely diverse, the assemblage of discoasters in the upper Paleocene and lower Eocene calcareous oozes is indicative of warm, relatively equable climates during that interval. A peak in discoaster diversity in uppermost Paleocene sediments (Zone CP8) corresponds to a negative shift in 5180 values. Associated coccolith assemblages are quite characteristic of high latitudes with abundant Chiasmolithus, Prinsius, and Toweius. Climatic cooling is indicated for middle Eocene sediments by assemblages that contain very abundant Reticulofenestra, lack common discoasters and sphenoliths and are much less diverse overall. Two new taxa are described, Biscutum? neocoronum n. sp. and Amithalithina sigmundii n. gen., n. sp.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Well preserved middle Miocene to Recent radiolarians were recovered from several sites in the Weddell Sea by ODP (Ocean Drilling Program) Leg 113. Low rates of sedimentation, hiatuses, and poor core recovery in some sites are offset by the nearly complete recovery of a late middle Miocene to late Pliocene section at Site 689 on the Maud Rise. Although a hiatus within the latest Miocene exists, this site still provides an excellent reference section for Antarctic biostratigraphy. A detailed radiolarian stratigraphy for the middle Miocene to late Pliocene of Site 689 is given, together with supplemental stratigraphic data from ODP Leg 113 Sites 690, 693, 695, 696, and 697. A refined Antarctic zonation for the middle Miocene to Recent is presented, based on the previous zonations of Hays (1965), Chen (1975), Weaver (1976b), and Keany (1979). The late Miocene radiolarian Acrosphaera australis n. sp. is described and used to define the A. australis zone, ranging from the first appearance of the nominate species to the last appearance of Cycladophora spongothorax (Chen) Lombari and Lazarus 1988. The species Botryopera deflandrei Petrushevskaya 1975 is transferred to Antarctissa deflandrei (Petrushevskaya) n. comb.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Benthic oxygen and carbon isotopic results from a depth transect on Maud Rise, Antarctica, provide the first evidence for Warm Saline Deep Water (WSDW) in the Paleogene oceans. Distinct reversals occur in the oxygen isotopic gradient between the shallower Hole 689B (Eocene depth ~1400 m; present-day depth 2080 m) and the deeper Hole 690B (Eocene depth ~2250 m; present-day depth 2914 m). The isotopic reversals, well developed by at least 46 Ma (middle middle Eocene), existed for much of the remaining Paleogene. We do not consider these reversals to be artifacts of differential diagenesis between the two sites or to have resulted from other potentially complicating factors. This being so, the results show that deep waters at Hole 690B were significantly warmer than deep waters at the shallower Hole 689B. A progressive decrease and eventual reversal in benthic to planktonic delta18O gradients in Hole 690B, demonstrate that the deeper waters became warmer relative to Antarctic surface waters during the Eocene. The warmer deep waters of the Paleogene are inferred to have been produced at middle to low latitudes, probably in the Tethyan region which contained extensive shallow-water platforms, ideal sites for the formation of high salinity water through evaporative processes. The ocean during the Eocene, and perhaps the Paleocene, is inferred to have been two-layered, consisting of warm, saline deep waters formed at low latitudes and overlain by cooler waters formed at high latitudes. This thermospheric ocean, dominated by halothermal circulation we name Proteus. The Neogene and modern psychrospheric ocean Oceanus is dominated by thermohaline circulation of deep waters largely formed at high latitudes. An intermediate condition existed during the Oligocene, with a three-layered ocean that consisted of cold, dense deep waters formed in the Antarctic (Proto-AABW), overlain by warm, saline deep waters from low latitudes, and in turn overlain by cool waters formed in the polar regions. This we name Proto-oceanus which combined both halothermal and thermohaline processes. The sequence of high latitude, major, climatic change inferred from the oxygen isotopic records is as follows: generally cooler earlier Paleocene; warming during the late Paleocene; climax of Cenozoic warmth during the early Eocene and continuing into the early middle Eocene; cooling mainly in a series of steps during the remainder of the Paleogene. Superimposed upon this Paleogene pattern, the Paleocene/Eocene boundary is marked by a brief but distinct warming that involved deep to surface waters and a reduction in surface to deep carbon and oxygen isotopic gradients. This event coincided with major extinctions among the deep-sea benthic foraminifers as shown by Thomas (1990 doi:10.2973/odp.proc.sr.113.123.1990). Salinity has played a major role in deep ocean circulation, and thus paleotemperatures cannot be inferred directly from the oxygen isotopic composition of Paleogene benthic foraminifers without first accounting for the salinity effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Cenozoic multi-species record of benthic foraminiferal calcite Sr/Ca has been produced and is corrected for interspecific offsets (typically less than 0.3 mmol/mol) and for the linear relationship between decreasing benthic foraminiferal Sr/Ca and increasing water depth. The water depth correction, determined from Holocene, Late Glacial Maximum and Eocene paleowater-depth transects, is ~0.1 mmol/mol/km. The corrected Cenozoic benthic foraminiferal Sr/Ca record ranges from 1.2 to 2.0 mmol/mol, and has been interpreted in terms of long-term changes in seawater Sr/Ca, enabling issues related to higher-resolution variability in Sr/Ca to be ignored. We estimate that seawater Sr/Ca was ~1.5 times modern values in the late Cretaceous, but declined rapidly into the Paleogene. Following a minimum in the Eocene, seawater Sr/Ca increased gradually through to the present day with a minimum superimposed on this trend centered in the late Miocene. By assuming scenarios for changing seawater calcium concentration, and using published carbonate accumulation rate data combined with suitable values for Sr partition coefficients into carbonates, the seawater Sr/Ca record is used to estimate global average river Sr fluxes. These fluxes are used in conjunction with the seawater strontium isotope curve and estimates of hydrothermal activity/tectonic outgassing to calculate changes in global average river 87Sr/86Sr through the Cenozoic. The absolute magnitude of Sr fluxes and isotopic compositions calculated in this way are subject to relatively large uncertainties. Nevertheless, our results suggest that river Sr flux increased from 35 Ma to the present day (roughly two-fold) accompanied by an overall increase in 87Sr/86Sr (by ~0 to 0.001). Between 75 and 35 Ma, river 87Sr/86Sr also increased (by ~0.001 to 0.002) but was accompanied by a decrease (two- to three-fold) in river Sr flux.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analyzed 87Sr/86Sr ratios in foraminifera, pore fluids, and fish teeth for samples ranging in age from Eocene to Pleistocene from four Ocean Drilling Program sites distributed around the globe: Site 1090 in the Cape Basin of the Southern Ocean, Site 757 on the Ninetyeast Ridge in the Indian Ocean, Site 807 on the Ontong-Java Plateau in the western equatorial Pacific, and Site 689 on the Maud Rise in the Southern Ocean. Sr isotopic ratios for dated foraminifera consistently plot on the global seawater Sr isotope curve. For Sites 1090, 757, and 807 Sr isotopic values of the pore fluids are generally less radiogenic than contemporaneous seawater values, as are values for fossil fish teeth. In contrast, pore fluid 87Sr/86Sr values at Site 689 are more radiogenic than contemporaneous seawater, and the corresponding fish teeth also record more radiogenic values. Thus, Sr isotopic values preserved in fossil fish teeth are consistently altered in the direction of the pore fluid values; furthermore, there is a correlation between the magnitude of the offset between the pore fluids and the seawater curve, and the associated offset between the fish teeth and the seawater curve. These data suggest that the hydroxyfluorapatite of the fossil fish teeth continues to recrystallize and exchange Sr with its surroundings during burial and diagenesis. Therefore, Sr chemostratigraphy can be used to determine rough ages for fossil fish teeth in these cores, but cannot be used to fine-tune age models. In contrast to the Sr isotopic system, our Nd concentration data, combined with published isotopic and rare earth element data, suggest that fish teeth acquire Nd during early diagenesis while they are still in direct contact with seawater. The concentrations of Nd acquired at this stage are extremely high relative to the concentrations in surrounding pore fluids. As a result, Nd isotopes are not altered during burial and later diagenesis. Therefore, fossil fish teeth from a variety of marine environments preserve a reliable and robust record of deep seawater Nd isotopic compositions from the time of deposition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paleogene stable oxygen and carbon isotopes were measured in formainifera from ODP Sites 689 and 690 at Maud Rise in the Atlantic Ocean sector of the Southern Ocean, and from Sites 738, 744, 748 and 749 at the southern Kerguelen Plateau in the Indian Ocean sector. These data were compared with sedimentological data from the same sample set. Both benthic and planktic d18O values document a cooling trend beginning around 49.5 Ma at all sites. During the late middle Eocene planktic d18O values indicate a steepening latitudinal temperature gradient from 14°C at the northern sites towards 10°C at the southernmost sites. Terrigeneous sand grains of probably ice rafted origin and clay mineral assemblages point to the existence of a limited East Antarctic ice cap with some glaciers reaching sea level as early as middle Eocene time around 45.5 Ma. Between 45 and 40 Ma, average paleotemperatures were between 5° and 7°C in deep and intermediate water masses, while near-surface water masses ranged between 6° and 10°C. During the late Eocene, between 40 and 36 Ma, average temperatures further decreased to 4°-5°C in the deep and intermediate water masses and to 5°-8°C near the sea surface. Abruptly increasing d18O values at approximately 35.9 Ma exactly correlate with a sharp pulse in the deposition of ice-rafted material on the Kerguelen Plateau, a dramatic change in clay mineral composition, and an altered Southern Ocean circulation indicated by a differentiation of benthic d13C values between sites, increasing opal concentrations and decreasing carbonate contents. For planktic and benthic foraminifera this d18O increase ranges between 1.0 and 1.3 per mil, and between 0.9 and 1.4 per mil, respectively. We favour a hypothesis that explains most of the d18O shift at 35.9 Ma with a buildup of a continental East Antarctic ice sheet. Consequently, relatively warm Oligocene Antarctic surface water temperatures probably are explained by a temperate, wet-based nature of the ice sheet. This would also aid in the fast build-up of an ice sheet by enhancing the moisture transport on to the continent.