978 resultados para 110-675
Resumo:
Contenido Introducción 1. Inteligencia emocional, liderazgo transformacional y género: factores que influencian el desempeño organizacional / Ana María Galindo Londoño, Sara Urrego Mayorga; Director: Juan Carlos Espinosa Méndez. 2. El rol de la mujer en el liderazgo / Andrea Patricia Cuestas Díaz; Directora: Francoise Venezia Contreras Torres. 3. Liderazgo transformacional, clima organizacional, satisfacción laboral y desempeño. Una revisión de la literatura / Juliana Restrepo Orozco, Ángela Marcela Ochoa Rodríguez; Directora: Françoise Venezia Contreras Torres. 4. “E-Leadership” una perspectiva al mundo de las compañías globalizadas / Ángela Beatriz Morales Morales, Mónica Natalia Aguilera Velandia; Director: Juan Carlos Espinosa. 5. Liderazgo y cultura. Una revisión / Daniel Alejandro Romero Galindo; Directora: Francoise Venezia Contreras Torres. 6. La investigación sobre la naturaleza del trabajo directivo: una revisión de la literatura / Julián Felipe Rodríguez Rivera, María Isabel Álvarez Rodríguez; Director: Juan Javier Saavedra Mayorga. 7. La mujer en la alta dirección en el contexto colombiano / Ana María Moreno, Juliana Moreno Jaramillo ; Directora: Françoise Venezia Contreras Torres. 8. Influencia de la personalidad en el discurso y liderazgo de George W. Bush después del 11 de septiembre de 2011 / Karen Eliana Mesa Torres; Director: Juan Carlos Espinosa. 9. La investigación sobre el campo del followership: una revisión de la literatura / Christian D. Báez Millán, Leidy J. Pinzón Porras; Director: Juan Javier Saavedra Mayorga. 10. El liderazgo desde la perspectiva del poder y la influencia. Una revisión de la literatura / Lina María García, Juan Sebastián Naranjo; Director: Juan Javier Saavedra Mayorga. 11. El trabajo directivo para líderes y gerentes: una visión integradora de los roles organizacionales / Lina Marcela Escobar Campos, Daniel Mora Barrero; Director: Rafael Piñeros. 12. Participación emocional en la toma de decisiones / Lina Rocío Poveda C., Gloria Johanna Rueda L.; Directora: Francoise Contreras T. 13. Estrés y su relación con el liderazgo / María Camila García Sierra, Diana Paola Rocha Cárdenas; Director: Juan Carlos Espinosa. 14. “Burnout y engagement” / María Paola Jaramillo Barrios, Natalia Rojas Mancipe; Director: Rafael Piñeros.
Resumo:
Incluye índice temático. Editado por Seth Lindstromberg y traducción española de Alejandro Valero
Resumo:
Recopilación de juegos procedente de diversas fuentes; apropiados para realizar en actividades de tiempo libre. En cada juego se especifica la edad adecuada y número de los participantes, habilidades que se pretende desarrollar, materiales necesarios; también, las reglas y desarrollo de cada actividad.
Resumo:
Se presenta el Plan de inversiones para el curso 1961-1962, del Fondo para el Fomento de Igualdad de Oportunidades, por parte del Ministro de Educación Nacional, el Sr. Rubio García-Mina. Se desarrolla este plan respecto a la Enseñanza Primaria y Enseñanza Media y Profesional. Se aporta el detalle de las inversiones del plan en cifras.
Resumo:
We have investigated the adsorption and thermal decomposition of copper hexafluoroacetylacetonate (Cu-11(hfaC)(2)) on single crystal rutile TiO2(110). Low energy electron diffraction shows that room temperature saturation coverage of the Cu-II(hfac)(2) adsorbate forms an ordered (2 x 1) over-layer. X-ray and ultra-violet photoemission spectroscopy of the saturated surface were recorded as the sample was annealed in a sequential manner to reveal decomposition pathways. The results show that the molecule dissociatively adsorbs by detachment of one of the two ligands to form hfac and Cu-1(hfac) which chemisorb to the substrate at 298 K. These ligands only begin to decompose once the surface temperature exceeds 473 K where Cu core level shifts indicate metallisation. This reduction from Cu(I) to Cu(0) takes place in the absence of an external reducing agent and without disproportionation and is accompanied by the onset of decomposition of the hfac ligands. Finally, C K-edge near edge X-ray absorption fine structure experiments indicate that both the ligands adsorb aligned in the < 001 > direction and we propose a model in which the hfac ligands adsorb on the 5-fold coordinated Ti atoms and the Cu-1(hfac) moiety attaches to the bridging O atoms in a square planar geometry. The calculated tilt angle for these combined geometries is approximately 10 degrees to the surface normal.
Resumo:
Point defects in metal oxides such as TiO2 are key to their applications in numerous technologies. The investigation of thermally induced nonstoichiometry in TiO2 is complicated by the difficulties in preparing and determining a desired degree of nonstoichiometry. We study controlled self-doping of TiO2 by adsorption of 1/8 and 1/16 monolayer Ti at the (110) surface using a combination of experimental and computational approaches to unravel the details of the adsorption process and the oxidation state of Ti. Upon adsorption of Ti, x-ray and ultraviolet photoemission spectroscopy (XPS and UPS) show formation of reduced Ti. Comparison of pure density functional theory (DFT) with experiment shows that pure DFT provides an inconsistent description of the electronic structure. To surmount this difficulty, we apply DFT corrected for on-site Coulomb interaction (DFT+U) to describe reduced Ti ions. The optimal value of U is 3 eV, determined from comparison of the computed Ti 3d electronic density of states with the UPS data. DFT+U and UPS show the appearance of a Ti 3d adsorbate-induced state at 1.3 eV above the valence band and 1.0 eV below the conduction band. The computations show that the adsorbed Ti atom is oxidized to Ti2+ and a fivefold coordinated surface Ti atom is reduced to Ti3+, while the remaining electron is distributed among other surface Ti atoms. The UPS data are best fitted with reduced Ti2+ and Ti3+ ions. These results demonstrate that the complexity of doped metal oxides is best understood with a combination of experiment and appropriate computations.
Resumo:
Model catalysts of Pd nanoparticles and films on TiO2 (I 10) were fabricated by metal vapour deposition (MVD). Molecular beam measurements show that the particles are active for CO adsorption, with a global sticking probability of 0.25, but that they are deactivated by annealing above 600 K, an effect indicative of SMSI. The Pd nanoparticles are single crystals oriented with their (I 11) plane parallel to the surface plane of the titania. Analysis of the surface by atomic resolution STM shows that new structures have formed at the surface of the Pd nanoparticles and films after annealing above 800 K. There are only two structures, a zigzag arrangement and a much more complex "pinwheel" structure. The former has a unit cell containing 7 atoms, and the latter is a bigger unit cell containing 25 atoms. These new structures are due to an overlayer of titania that has appeared on the surface of the Pd nanoparticles after annealing, and it is proposed that the surface layer that causes the SMSI effect is a mixed alloy of Pd and Ti, with only two discrete ratios of atoms: Pd/Ti of 1: 1 (pinwheel) and 1:2 (zigzag). We propose that it is these structures that cause the SMSI effect. (c) 2005 Elsevier Inc. All rights reserved.
CO Oxidation and the CO/NO Reaction on Pd(110) Studied Using "Fast" XPS and a Molecular Beam Reactor
Resumo:
Diffusion of Ti through the TiO2 (110) rutile surface plays a key role in the growth and reactivity of TiO2. To understand the fundamental aspects of this important process, we present an analysis of the diffusion of Ti adspecies at the stoichiometric TiO2(110) surface using complementary computational methodologies of density functional theory corrected for on-site Coulomb interactions (DFT+U) and a charge equilibration (QEq) atomistic potential to identify minimum energy pathways. We find that diffusion of Ti from the surface to subsurface (and vice versa) follows an intersticialcy exchange mechanism, involving exchange of surface Ti with the 6-fold coordinated Ti below the bridging oxygen rows. Diffusion in the subsurface between layers also follows an interstitialcy mechanism. The diffusion of Ti is discussed in light of continued attempts to understand the re-oxidation of non-stoichiometric TiO2(110) surfaces.
Resumo:
Gallaborane (GaBH6, 1), synthesized by the metathesis of LiBH4 with [H2GaCl]n at ca. 250 K, has been characterized by chemical analysis and by its IR and 1H and 11B NMR spectra. The IR spectrum of the vapor at low pressure implies the presence of only one species, viz. H2Ga(μ-H)2BH2, with a diborane-like structure conforming to C2v symmetry. The structure of this molecule has been determined by gas-phase electron diffraction (GED) measurements afforced by the results of ab initio molecular orbital calculations. Hence the principal distances (rα in Å) and angles ( α in deg) are as follows: r(Ga•••B), 2.197(3); r(Ga−Ht), 1.555(6); r(Ga−Hb), 1.800(6); r(B−Ht), 1.189(7); r(B−Hb), 1.286(7); Hb−Ga−Hb, 71.6(4); and Hb−B−Hb, 110.0(5) (t = terminal, b = bridging). Aggregation of the molecules occurs in the condensed phases. X-ray crystallographic studies of a single crystal at 110 K reveal a polymeric network with helical chains made up of alternating pseudotetrahedral GaH4 and BH4 units linked through single hydrogen bridges; the average Ga•••B distance is now 2.473(7) Å. The compound decomposes in the condensed phases at temperatures exceeding ca. 240 K with the formation of elemental Ga and H2 and B2H6. The reactions with NH3, Me3N, and Me3P are also described.
Resumo:
Here we describe results which teach us much about the mechanism of the reduction and oxidation of TiO2(110) by the application of scanning tunnelling microscopy imaging at high temperatures. Titania reduces at high temperature by thermal oxygen loss to leave localized (i.e. Ti3+) and delocalized electrons on the lattice Ti, and a reduced titania interstitial that diffuses into the bulk of the crystal. The interstitial titania can be recalled to the surface by treatment in very low pressures of oxygen, occurring at a significant rate even at 573 K. This re-oxidation occurs by re-growth of titania layers in a Volmer-Weber manner, by a repeating sequence in which in-growth of extra titania within the cross-linked (1 x 2) structure completes the (1 x 1) bulk termination. The next layer then initiates with the nucleation of points and strings which extend to form islands of cross-linked (1 x 2), which once again grow and fill in to reform the (1 x 1). This process continues in a cyclical manner to form many new layers of well-ordered titania. The details of the mechanism and kinetics of the process are considered.
Synergetic effects of the Cu/Pt{110} surface alloy: enhanced reactivity of water and carbon monoxide
Resumo:
We have used synchrotron-based high-resolution X-ray photoelectron spectroscopy in combination with ab initio density functional theory calculations to investigate the characteristics of water and CO adsorption on the bimetallic Cu/Pt{110}-(2 x 1) surface at a Cu coverage near 0.5 ML. Cu fills the troughs of the reconstructed clean surface forming nanowires, which are stable up to 830 K. Their presence dramatically influences the adsorption of water and CO. Water adsorption changes from intact to partially dissociated while the desorption temperature of CO on this surface increases by up to 27 K with respect to the clean Pt{110} surface. Ab initio calculations and experimental valence band spectra reveal that the Cu 3d-band is narrowed and shifted upward with respect to bulk Cu surfaces. This and electron donation to surface Pt atoms cause the increase in the bond strength between CO and the Pt surface atoms. The pathway for water dissociation occurs via Cu surface atoms. The heat of adsorption of water bonding to Cu surface atoms was calculated to be 0.82 eV, which is significantly higher than on the clean Pt{110} surface; the activation energy for partial dissociation is 0.53 eV (not corrected for zero point energy).