995 resultados para 09011401 CTD-111
Resumo:
Organised multilayers were formed from the controlled self-assembly of ferrocene alkyl thiols on Au(111) surfaces. The control was accomplished by increasing the concentration of the thiol solutions used for the assembly. Cyclic voltammetry, ellipsometry, scanning probe microscopy (STM and AFM) and in situ FTIR spectroscopy were used to probe the differences between mono- and multilayers of the same compounds. Electrochemical desorption studies confirmed that the multilayer structure is attached to the surface via one monolayer. The electrochemical behaviour of the multilayers indicated the presence of more than one controlling factor during the oxidation step, whereas the reduction was kinetically controlled which contrasts with the behaviour of monolayers, which exhibit kinetic control for the oxidation and reduction steps. Conventional and imaging ellipsometry confirmed that multilayers with well-defined increments in thickness could be produced. However, STM indicated that at the monolayer stage, the thiols used promote the mobility of Au atoms on the surface. It is very likely that the multilayer structure is held together through hydrogen bonding. To the best of out knowledge, this is the first example of a controlled one-step growth of multilayers of ferrocenyl alkyl thiols using self-assembly techniques.
Resumo:
The molecular ordering of coronene (C24H12) obtained by vacuum-deposition onto predominantly Ag(111) on mica has been investigated using the scanning tunnelling microscope. Real-space topographic images reveal that in certain regions we obtain layer-by-layer ordered growth of the molecules on this substrate which agrees with previous indirect measurements (the growth did not display this ordering in other regions). In our experiments on the ordered regions, we observe the best imaging contrast at a voltage bias of -0.28 V which may correspond to a resonant tunnelling process through the molecules. © 1995.
Resumo:
The issues and challenges of growing GaN-based structures on large area Si substrates have been studied. These include Si slip resulting from large temperature non-uniformities and cracking due to differential thermal expansion. Using an A1N nucleation layer in conjunction with an AlGaN buffer layer for stress management, and together with the interactive use of real time in-situ optical monitoring it was possible to realise flat, crack-free and uniform GaN and LED structures on 6-inch Si (111) substrates. The EL performance of processed LED devices was also studied on-wafer, giving good EL characteristics including a forward bias voltage of ∼3.5 V at 20 mA from a 500 μm × 500 μm device. © 2009 SPIE.
Resumo:
We demonstrate the growth of crack-free blue and greenemitting LED structures grown on 2-inch and 6-inch Si(111) substrates by metalorganic vapour phase epitaxy (MOVPE), using AlN nucleation layers and AlGaN buffer layers for stress management. LED device performance and its dependence on threading dislocation (TD) density and emission wavelength were studied. Despite the inherently low light extraction efficiency, an output power of 1.2 mW at 50 mA was measured from a 500 μm square planar device, emitting at 455 nm. The light output decreases dramatically as the emission wavelength increases from 455 nm to 510 nm. For LED devices emitting at similar wavelength, the light output was more than doubled when the TD density was reduced from 5×1 09 cm-2 to 2×109 cm-2. Our results clearly show that high TD density is detrimental to the overall light output, highlighting the need for further TD reduction for structures grown on Si. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.
Resumo:
The structure and chemistry of the interface between a Si(111) substrate and an AlN(0001) thin film grown by metalorganic vapor phase epitaxy have been investigated at a subnanometer scale using high-angle annular dark field imaging and electron energy-loss spectroscopy. 〈1120̄〉AlN ∥ 〈110〉Si and 〈0001〉AlN ∥ 〈111〉 Si epitaxial relations were observed and an Al-face polarity of the AlN thin film was determined. Despite the use of Al deposition on the Si surface prior to the growth, an amorphous interlayer of composition SiNx was identified at the interface. Mechanisms leading to its formation are discussed. © 2010 American Institute of Physics.
Resumo:
El presente estudio se realizó con el objetivo de desarrollar metodología para la micropropagación a partir de ápices caulinares, utilizando la técnica Spinder, y posteriormente aclimatación de las vitroplantas de dos clones de caña de azúcar (Saccharum sp.) (ISA 96-110 e ISA 96- 111). Se estudió el efecto que sobre el establecimiento tendrian 4 variantes del medio de cultivo MS (1962), suplidas con 0.0, 0.2 y 0.6 mg/1 de 6-BAP. Se utilizaron 15 réplicas por tratamiento. Se evaluó el efecto que sobre la brotación tuvieron 4 variantes del medio MS (1962), a las que se les adicionó 0.0, 0.1 y 0.5 mg/1 de 6 BAP durante tres subcultivos sucesivos. Se utilizaron 5 réplicas por variante en estudio. Para inducir el mayor enraizamiento se probaron 4 variantes líquidas del medio MS ( 1962), suplidas con 0.0, 1.0 y 1.6 mg/1 de AlA. Para el estudio de aclimatación se emplearon 30 plantas por cultivar y se establecieron en un sustrato de lombrices Californiana (Eisenia foetida). El clon ISA 96-110 presentó mayor porcentaje de fenolización y menor curvatura que el clon ISA 96-111. El medio de cultivo MS + 0.60 m g/1 de 6-BAP indujo al menor porcentaje de fenolización (33.0) y mayor de curvatura (60.0) en el clon ISA 96-110, el medio MS + 0.20 mg/1 de 6- BAP en el clon ISA 96-111. La sobrevivencia de las plantas del clon ISA- 111 fue de 100 % en todos los medios de cultivo, para el ISA 96-11O sólo los medios MS + 0.20 y MS + 0.00 mg/1 de 6-BAP. No hubo aumento de los valores de las variables altura de la planta, número de brotes y de hojas con el aumento del número de subcultivos. El medio de cultivo que indujo mayor brotación para el clon ISA 96-11 O fue el MS + 0.30 mg/1, mientras que para el clon ISA 96-111 fue el MS + 0.1 mg/1 de 6- BAP. El clon ISA 96-111 reportó resultados superiores en longitud (5.75 cm) y número de raices (7.4) por planta. El medio de cultivo MS + 1.3 mg/1 de AlA indujo los mejores resultados en ambos clones. El comportamiento de las plantas del clon ISA 96-1 11 fueron superiores a las del clon ISA 96-11O al momento de la aclimatación
Resumo:
Contenido: Actualidad perenne del tomismo / Octavio N. Derisi – The commentary of St. Thomas on the Decaelo of Aristotle / James A. Weisheipl – Desocultamiento y creación / Raúl Echauri – le cercle de la connaissance et du vouloir á propos d’un texte de Saint Thomas / Joseph de Finance -- Notas y comentarios -- Bibliografía
Resumo:
Consultoria de Orçamento e Fiscalização Financeira. Núcleo de Assuntos Econômico-Fiscais
Resumo:
The core-level energy shifts observed using X-ray photoelectron spectroscopy (XPS) have been used to determine the band bending at Si(111) surfaces terminated with Si-Br, Si-H, and Si-CH3 groups, respectively. The surface termination influenced the band bending, with the Si 2p3/2 binding energy affected more by the surface chemistry than by the dopant type. The highest binding energies were measured on Si(111)-Br (whose Fermi level was positioned near the conduction band at the surface), followed by Si(111)-H, followed by Si(111)-CH3 (whose Fermi level was positioned near mid-gap at the surface). Si(111)-CH3 surfaces exposed to Br2(g) yielded the lowest binding energies, with the Fermi level positioned between mid-gap and the valence band. The Fermi level position of Br2(g)-exposed Si(111)-CH3 was consistent with the presence of negatively charged bromine-containing ions on such surfaces. The binding energies of all of the species detected on the surface (C, O, Br) shifted with the band bending, illustrating the importance of isolating the effects of band bending when measuring chemical shifts on semiconductor surfaces. The influence of band bending was confirmed by surface photovoltage (SPV) measurements, which showed that the core levels shifted toward their flat-band values upon illumination. Where applicable, the contribution from the X-ray source to the SPV was isolated and quantified. Work functions were measured by ultraviolet photoelectron spectroscopy (UPS), allowing for calculation of the sign and magnitude of the surface dipole in such systems. The values of the surface dipoles were in good agreement with previous measurements as well as with electronegativity considerations. The binding energies of the adventitious carbon signals were affected by band bending as well as by the surface dipole. A model of band bending in which charged surface states are located exterior to the surface dipole is consistent with the XPS and UPS behavior of the chemically functionalized Si(111) surfaces investigated herein.
Resumo:
The functionalization of silicon surfaces with molecular catalysts for proton reduction is an important part of the development of a solar-powered, water-splitting device for solar fuel formation. The covalent attachment of these catalysts to silicon without damaging the underlying electronic properties of silicon that make it a good photocathode has proven difficult. We report the formation of mixed monolayer-functionalized surfaces that incor- porate both methyl and vinylferrocenyl or vinylbipyridyl (vbpy) moieties. The silicon was functionalized using reaction conditions analogous to those of hydrosilylation, but instead of a H-terminated Si surface, a chlorine-terminated Si precursor surface was used to produce the linked vinyl-modified functional group. The functionalized surfaces were characterized by time-resolved photoconductivity decay, X-ray photoelectron spectroscopy (XPS), electro- chemical, and photoelectrochemical measurements. The functionalized Si surfaces were well passivated, exhibited high surface coverage and few remaining reactive Si atop sites, had a very low surface recombination velocity, and displayed little initial surface oxidation. The surfaces were stable toward atmospheric and electrochemical oxidation. The surface coverage of ferrocene or bipyridine was controllably varied from 0 up to 30% of a monolayer without loss of the underlying electronic properties of the silicon. Interfacial charge transfer to the attached ferrocene group was relatively rapid, and a photovoltage of 0.4 V was generated upon illumination of functionalized n-type silicon surfaces in CH3CN. The immobilized bipyridine ligands bound transition metal ions, and thus enabled the assembly of metal complexes on the silicon surface. XPS studies demonstrated that [Cp∗Rh(vbpy)Cl]Cl, [Cp∗Ir(vbpy)Cl]Cl, and Ru(acac)2vbpy were assembled on the surface. For the surface prepared with iridium, x-ray absorption spectroscopy at the Ir LIII edge showed an edge energy and post-edge features virtually identical to a powder sample of [Cp∗Ir(bipy)Cl]Cl (bipy is 2,2 ́-bipyridyl). Electrochemical studies on these surfaces confirmed that the assembled complexes were electrochemically active.
Resumo:
A study has been made primarily of the food of the chironomid Procladius nigriventris: this includes Alona affinis, Bosmina coregoni, Camptocercus, Eucyclops serrulatus, Paracyclops fimbriatus, Acanthocyclops viridis, Harpacticoida, Diaptomus graciloides, Ostracods, Chironomus sp, Polypedilum sp and Tanytarsus sp. Chironomus larvae usually found in the gut are in their 1st or 2nd instars , though occasional 3rd instars are present. The study summarises other findings on the feeding behaviour of Procladius nigriventris.