993 resultados para 060102 Bioinformatics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioinformatics is a recent and emerging discipline which aims at studying biological problems through computational approaches. Most branches of bioinformatics such as Genomics, Proteomics and Molecular Dynamics are particularly computationally intensive, requiring huge amount of computational resources for running algorithms of everincreasing complexity over data of everincreasing size. In the search for computational power, the EGEE Grid platform, world's largest community of interconnected clusters load balanced as a whole, seems particularly promising and is considered the new hope for satisfying the everincreasing computational requirements of bioinformatics, as well as physics and other computational sciences. The EGEE platform, however, is rather new and not yet free of problems. In addition, specific requirements of bioinformatics need to be addressed in order to use this new platform effectively for bioinformatics tasks. In my three years' Ph.D. work I addressed numerous aspects of this Grid platform, with particular attention to those needed by the bioinformatics domain. I hence created three major frameworks, Vnas, GridDBManager and SETest, plus an additional smaller standalone solution, to enhance the support for bioinformatics applications in the Grid environment and to reduce the effort needed to create new applications, additionally addressing numerous existing Grid issues and performing a series of optimizations. The Vnas framework is an advanced system for the submission and monitoring of Grid jobs that provides an abstraction with reliability over the Grid platform. In addition, Vnas greatly simplifies the development of new Grid applications by providing a callback system to simplify the creation of arbitrarily complex multistage computational pipelines and provides an abstracted virtual sandbox which bypasses Grid limitations. Vnas also reduces the usage of Grid bandwidth and storage resources by transparently detecting equality of virtual sandbox files based on content, across different submissions, even when performed by different users. BGBlast, evolution of the earlier project GridBlast, now provides a Grid Database Manager (GridDBManager) component for managing and automatically updating biological flatfile databases in the Grid environment. GridDBManager sports very novel features such as an adaptive replication algorithm that constantly optimizes the number of replicas of the managed databases in the Grid environment, balancing between response times (performances) and storage costs according to a programmed cost formula. GridDBManager also provides a very optimized automated management for older versions of the databases based on reverse delta files, which reduces the storage costs required to keep such older versions available in the Grid environment by two orders of magnitude. The SETest framework provides a way to the user to test and regressiontest Python applications completely scattered with side effects (this is a common case with Grid computational pipelines), which could not easily be tested using the more standard methods of unit testing or test cases. The technique is based on a new concept of datasets containing invocations and results of filtered calls. The framework hence significantly accelerates the development of new applications and computational pipelines for the Grid environment, and the efforts required for maintenance. An analysis of the impact of these solutions will be provided in this thesis. This Ph.D. work originated various publications in journals and conference proceedings as reported in the Appendix. Also, I orally presented my work at numerous international conferences related to Grid and bioinformatics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological data are inherently interconnected: protein sequences are connected to their annotations, the annotations are structured into ontologies, and so on. While protein-protein interactions are already represented by graphs, in this work I am presenting how a graph structure can be used to enrich the annotation of protein sequences thanks to algorithms that analyze the graph topology. We also describe a novel solution to restrict the data generation needed for building such a graph, thanks to constraints on the data and dynamic programming. The proposed algorithm ideally improves the generation time by a factor of 5. The graph representation is then exploited to build a comprehensive database, thanks to the rising technology of graph databases. While graph databases are widely used for other kind of data, from Twitter tweets to recommendation systems, their application to bioinformatics is new. A graph database is proposed, with a structure that can be easily expanded and queried.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advances in novel molecular biological diagnostic methods are changing the way of diagnosis and study of metabolic disorders like growth hormone deficiency. Faster sequencing and genotyping methods require strong bioinformatics tools to make sense of the vast amount of data generated by modern laboratories. Advances in genome sequencing and computational power to analyze the whole genome sequences will guide the diagnostics of future. In this chapter, an overview of some basic bioinformatics resources that are needed to study metabolic disorders are reviewed and some examples of bioinformatics analysis of human growth hormone gene, protein and structure are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. We detail some of the design decisions, software paradigms and operational strategies that have allowed a small number of researchers to provide a wide variety of innovative, extensible, software solutions in a relatively short time. The use of an object oriented programming paradigm, the adoption and development of a software package system, designing by contract, distributed development and collaboration with other projects are elements of this project's success. Individually, each of these concepts are useful and important but when combined they have provided a strong basis for rapid development and deployment of innovative and flexible research software for scientific computation. A primary objective of this initiative is achievement of total remote reproducibility of novel algorithmic research results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While scientific research and the methodologies involved have gone through substantial technological evolution the technology involved in the publication of the results of these endeavors has remained relatively stagnant. Publication is largely done in the same manner today as it was fifty years ago. Many journals have adopted electronic formats, however, their orientation and style is little different from a printed document. The documents tend to be static and take little advantage of computational resources that might be available. Recent work, Gentleman and Temple Lang (2004), suggests a methodology and basic infrastructure that can be used to publish documents in a substantially different way. Their approach is suitable for the publication of papers whose message relies on computation. Stated quite simply, Gentleman and Temple Lang propose a paradigm where documents are mixtures of code and text. Such documents may be self-contained or they may be a component of a compendium which provides the infrastructure needed to provide access to data and supporting software. These documents, or compendiums, can be processed in a number of different ways. One transformation will be to replace the code with its output -- thereby providing the familiar, but limited, static document. In this paper we apply these concepts to a seminal paper in bioinformatics, namely The Molecular Classification of Cancer, Golub et al. (1999). The authors of that paper have generously provided data and other information that have allowed us to largely reproduce their results. Rather than reproduce this paper exactly we demonstrate that such a reproduction is possible and instead concentrate on demonstrating the usefulness of the compendium concept itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein-coding gene families are sets of similar genes with a shared evolutionary origin and, generally, with similar biological functions. In plants, the size and role of gene families has been only partially addressed. However, suitable bioinformatics tools are being developed to cluster the enormous number of sequences currently available in databases. Specifically, comparative genomic databases promise to become powerful tools for gene family annotation in plant clades. In this review, I evaluate the data retrieved from various gene family databases, the ease with which they can be extracted and how useful the extracted information is.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subject of the major part of such applications. Estimation of distribution algorithms (EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining the nature and complexity of the probabilistic model of each EDA variant. We review a set of innovative works that make use of EDA techniques to solve challenging bioinformatics problems, emphasizing the EDA paradigm's potential for further research in this domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomedical ontologies are key elements for building up the Life Sciences Semantic Web. Reusing and building biomedical ontologies requires flexible and versatile tools to manipulate them efficiently, in particular for enriching their axiomatic content. The Ontology Pre Processor Language (OPPL) is an OWL-based language for automating the changes to be performed in an ontology. OPPL augments the ontologists’ toolbox by providing a more efficient, and less error-prone, mechanism for enriching a biomedical ontology than that obtained by a manual treatment. Results We present OPPL-Galaxy, a wrapper for using OPPL within Galaxy. The functionality delivered by OPPL (i.e. automated ontology manipulation) can be combined with the tools and workflows devised within the Galaxy framework, resulting in an enhancement of OPPL. Use cases are provided in order to demonstrate OPPL-Galaxy’s capability for enriching, modifying and querying biomedical ontologies. Conclusions Coupling OPPL-Galaxy with other bioinformatics tools of the Galaxy framework results in a system that is more than the sum of its parts. OPPL-Galaxy opens a new dimension of analyses and exploitation of biomedical ontologies, including automated reasoning, paving the way towards advanced biological data analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Support for molecular biology researchers has been limited to traditional library resources and services in most academic health sciences libraries. The University of Washington Health Sciences Libraries have been providing specialized services to this user community since 1995. The library recruited a Ph.D. biologist to assess the molecular biological information needs of researchers and design strategies to enhance library resources and services. A survey of laboratory research groups identified areas of greatest need and led to the development of a three-pronged program: consultation, education, and resource development. Outcomes of this program include bioinformatics consultation services, library-based and graduate level courses, networking of sequence analysis tools, and a biological research Web site. Bioinformatics clients are drawn from diverse departments and include clinical researchers in need of tools that are not readily available outside of basic sciences laboratories. Evaluation and usage statistics indicate that researchers, regardless of departmental affiliation or position, require support to access molecular biology and genetics resources. Centralizing such services in the library is a natural synergy of interests and enhances the provision of traditional library resources. Successful implementation of a library-based bioinformatics program requires both subject-specific and library and information technology expertise.

Relevância:

20.00% 20.00%

Publicador: