974 resultados para 0601 Biochemistry and Cell Biology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ghrelin is a peptide hormone that was originally isolated from the stomach as the endogenous ligand for the growth hormone secretagogue receptor (GHSR). Ghrelin has many functions, including the regulation of appetite and gut motility, growth hormone release from the anterior pituitary and roles in the cardiovascular and immune systems. Ghrelin and its receptor are expressed in a number of cancers and cancer cell lines and may play a role in processes associated with cancer progression, including cell proliferation, apoptosis, and cell invasion and migration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obestatin is a 23 amino acid, ghrelin gene-derived peptide hormone produced in the stomach and a range of other tissues throughout the body. While it was initially reported that obestatin opposed the actions of ghrelin with regards to appetite and food intake, it is now clear that obestatin is not an endogenous ghrelin antagonist of ghrelin, but it is a multi-functional peptide hormone in its own right. In this review we will discuss the controversies associated with the discovery of obestatin and explore emerging central and peripheral roles of obestatin, roles in adipogenesis, pancreatic homeostasis and cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kallikreins and kallikrein-related peptidases are serine proteases that control a plethora of developmental and homeostatic phenomena, ranging from semen liquefaction to skin desquamation and blood pressure. The diversity of roles played by kallikreins has stimulated considerable interest in these enzymes from the perspective of diagnostics and drug design. Kallikreins already have well-established credentials as targets for therapeutic intervention and there is increasing appreciation of their potential both as biomarkers and as targets for inhibitor design. Here, we explore the current status of naturally occurring kallikrein protease-inhibitor complexes and illustrate how this knowledge can interface with strategies for rational re-engineering of bioscaffolds and design of small-molecule inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PCR-based cancer diagnosis requires detection of rare mutations in k- ras, p53 or other genes. The assumption has been that mutant and wild-type sequences amplify with near equal efficiency, so that they are eventually present in proportions representative of the starting material. Work on factor IX suggests that this assumption is invalid for one case of near- sequence identity. To test the generality of this phenomenon and its relevance to cancer diagnosis, primers distant from point mutations in p53 and k-ras were used to amplify wild-type and mutant sequences from these genes. A substantial bias against PCR amplification of mutants was observed for two regions of the p53 gene and one region of k-ras. For k-ras and p53, bias was observed when the wild-type and mutant sequences were amplified separately or when mixed in equal proportions before PCR. Bias was present with proofreading and non-proofreading polymerase. Mutant and wild-type segments of the factor V, cystic fibrosis transmembrane conductance regulator and prothrombin genes were amplified and did not exhibit PCR bias. Therefore, the assumption of equal PCR efficiency for point mutant and wild-type sequences is invalid in several systems. Quantitative or diagnostic PCR will require validation for each locus, and enrichment strategies may be needed to optimize detection of mutants.