992 resultados para óxidos de Fe e de Al
Resumo:
Morphological, geochemical and mineralogical studies were carried out in a representative soil catena of the low-elevation plateaux of the upper Amazon Basin to interpret the steps and mechanisms involved in the podzolization of low-activity clay soils. The soils are derived from Palaeozoic sandstones. They consist of Hydromorphic Podzols under tree savannah in the depressions of the plateaux and predominantly of Acrisols covered by evergreen forest elsewhere.Incipient podzolization in the uppermost Acrisols is related to the formation of organic-rich A and Bhs horizons slightly depleted in fine-size particles by both mechanical particle transfer and weathering. Weathering of secondary minerals by organic acids and formation of organo-metallic complexes act simultaneously over short distances. Their vertical transfer is limited. Selective dissolution of aluminous goethite, then gibbsite and finally kaolinite favour the preferential cheluviation of first Fe and secondly Al. The relatively small amount of organo-metallic complexes produced is related to the quartzitic parent materials, and the predominance of Al over Fe in the spodic horizons is due to the importance of gibbsite in these low-activity clay soils.Morphologically well-expressed podzols occur in strongly iron-depleted topsoils of the depression. Mechanical transfer and weathering of gibbsite and kaolinite by organic acids is enhanced and leads to residual accumulation of sands. Organo-metallic complexes are translocated in strongly permeable sandy horizons and impregnate at depth the macro-voids of embedded soil and saprolite materials to form the spodic Bs and 2BCs horizons. Mechanical transfer of black particulate organic compounds devoid of metals has occurred later within the sandy horizons of the podzols. Their vertical transfer has formed well-differentiated A and Bh horizons. Their lateral removal by groundwater favours the development of an albic E horizon. In an open and waterlogged environment, the general trend is therefore towards the removal of all the metals that have initially accumulated as a response to the ferralitization process and have temporarily been sequestrated in organic complexes in previous stages of soil podzolization.
Resumo:
Relief is regarded as the abiotic factor most strongly influencing pedogenic processes at a local scale. The spatial correlations between the composition of the clay fraction (iron - Fe and aluminum - Al oxides, kaolinite and organic matter - OM) and contents of available phosphorus (P) of an Oxisol were evaluated at hillslope scale under sugarcane cultivation. A total of 119 samples were collected at intersection points on a 100. ×. 100. m georeferenced grid of regularly spaced points 10. m apart in the 0.2-0.4. m depth in an area consisting of two landform components namely: component I (an area with a linear hillslope curvature), and component II (one with a concave-convex hillslope curvature). Soil OM and available P contents were subjected to descriptive statistics and geostatistical analyses in order to assess their variability and spatial dependence. All attributes studied were spatially dependent. Available phosphorus had positive spatial correlation with high crystalline goethite, hematite and gibbsite. Identifying small hillslope curvatures is useful with a view to better understanding their relationships with soil organic matter and available phosphorus, as well as kaolinite and Fe and Al oxide attributes. A simple correlation analysis by itself is inadequate to relate attributes, which requires a supplemental, geostatistical technique. © 2012 Elsevier B.V..
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
O mapeamento geológico realizado na área de Nova Canadá, porção sul do Domínio Carajás, Província Carajás, possibilitou a individualização de duas unidades de caráter máfico e intrusivas nos granitoides do Complexo Xingu e, mais restritamente, na sequência greenstone belt do Grupo Sapucaia. São representadas por diques de diabásio isotrópicos e por extensos corpos de anfibolito, com os últimos descrevendo texturas nematoblástica e granoblástica, de ocorrência restrita à porção SW da área. Ambos apresentam assinatura de basaltos subalcalinos de afinidade toleítica, sendo que os diques de diabásio são constituídos por três variedades petrográficas: hornblenda gabronorito, gabronorito e norito, sendo essas diferenças restritas apenas quanto à proporção modal de anfibólio, orto- e clinopiroxênio, já que texturalmente, as mesmas não apresentam diferenças significativas. São formados por plagioclásio, piroxênio (orto- e clinopiroxênio), anfibólio, minerais óxidos de Fe-Ti e olivina, apresentam um padrão ETR moderadamente fracionado, discreta anomalia negativa de Eu, ambiente geotectônico correspondente a intraplaca continental, e assinaturas dos tipos OIB e E-MORB. Já os anfibolitos são constituídos por plagioclásio, anfibólio, minerais opacos, titanita e biotita, mostram um padrão ETR horizontalizado, com anomalia de Eu ausente, sendo classificados como toleítos de arco de ilha e com assinatura semelhante aos N-MORB. Os dados de química mineral obtidos nessas unidades mostram que, nos diques de diabásio, o plagioclásio não apresenta variações composicionais significativas entre núcleo e borda, sendo classificados como labradorita, com raras andesina e bytownita; o anfibólio mostra uma gradação composicional de Fe-hornblenda para actinolita, com o aumento de sílica. Nos anfibolitos, o plagioclásio mostra uma grande variação composicional, de oligoclásio à bytownita nas rochas foliadas, sendo que nas menos deformadas, sua classificação é restrita à andesina sódica. O piroxênio, presente apenas nos diabásios, exibe considerável variação em sua composição, revelando um aumento no teor de magnésio nos núcleos, e de ferro e cálcio, nas bordas, permitindo classificá-los em augita, pigeonita (clinopiroxênio) e enstatita (ortopiroxênio). Os diabásios apresentam titanomagnetita, magnetita e ilmenita como os principais óxidos de Fe-Ti, permitindo reconhecer cinco formas distintas de ilmenita nessas rochas: ilmenita treliça, ilmenita sanduíche, ilmenita composta interna/externa, ilmenita em manchas e ilmenita individual. Feições texturais e composicionais sugerem que a titanomagnetita e os cristais de ilmenita composta externa e individual foram originados durante o estágio precoce de cristalização. Durante o estágio subsolidus, a titanomagnetita foi afetada pelo processo de oxi-exsolução, dando origem a intercrescimentos de magnetita pobre em titânio com ilmenita (ilmenitas treliça, em mancha, sanduíche e composta interna). Os anfibolitos possuem a ilmenita como único mineral óxido de Fe e Ti ocorrendo, portanto, sob a forma de ilmenita individual, onde encontra-se sempre associada ao anfibólio e à titanita. Os valores mais elevados de suscetibilidade magnética (SM) estão relacionados aos gabronoritos e noritos, os quais exibem maiores conteúdos modais de minerais opacos e apresentam titanomagnetita magmática em sua paragênese. A variedade hornblenda gabronorito define as amostras com valores intermediários de SM. Os menores valores de SM são atribuídos aos anfibolitos, que são desprovidos de magnetita. A correlação negativa entre valores de SM com os conteúdos modais de minerais ferromagnesianos indica que os minerais paramagnéticos (anfibólio e piroxênio) não possuem influência significativa no comportamento magnético dos diabásios, enquanto nos anfibolitos a tendência de correlação positiva entre estas variáveis pode sugerir que estas fases são as principais responsáveis pelos seus valores de SM. Dados geotermobarométricos obtidos a partir do par titanomagnetita-ilmenita nos diabásios indicam que estes se formaram em condições de temperatura (1112°C) e Fo2 (-8,85) próximas daquelas do tampão NNO.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
The ferruginous sandstone (Serra da Galga member) from Marilia formation present in sedimentary mining triangle plateaus - MG (southeast Brazil) is still not properly characterized, as well as the presence of a rich layer Fe nodules which is not properly understood, as are the alteration products of this material that may be linked to the presence of refractory clays which are characterized by intimate relationship between Fe and Al. Aluminum is widely present on top of these plateaus. This course conclusion paper characterized the mineralogy and distribution of smaller elements both rust sandstone evolved as soil above this sandstone. The characterization has been done by using X-ray fluorescence techniques (XRF), the iron was removed by using the CBD method (dithionito-citratebicarbonate), and X-ray diffraction (XRD) and analysis of the products extracted by the CBD method by ICP- OES were made to characterize the material. The results of the XRF show great variation of Al and Si, Fe with almost constant behavior in the average depth of 110 cm, where it has the highest concentration levels. Fe appear associated with the V and Ce. CDB results show a clear relation of Fe with Al. Al does not have in this case compared with Cr or any other item. The concentration of extracted Al was always below the concentration of Fe. In the region, the formation of this Latosols- Gleysols system is subject to topography and its influence on local water regime, a regime that has direct influence on the formation of supergene accumulations as in the area and results in aluminum accumulation in refractory clays exploited by IBAR mining
Resumo:
This study deals with the seasonal distribution of Al, Ca, Cu, Fe, K, Mg, Na, Pb and Zn and water soluble ions (Cl-, PO43-, NO3-, SO42-, HCOO-, CH3COO-, oxalate, succinate, Na+, NH4+, K+, Mg2+ and Ca2+) found in PM10 samples (particulate matter less than 10 mu m in diameter) Sao Paulo City, Brazil, (April 2003-May 2004). Higher atmospheric levels were found for SO42-, NO3-, Cl- and PO43- while the main organic anions were oxalate and formate. Atmospheric levels for elements were: Fe > Al > Ca > K > Na > Mg > Zn > Cu > Pb. Some sources were predominant for some species: (i) fuel burning and/or biomass burning (NO3-, HCOO-, C2O42-, K+, Mg2+, Ca2+, Fe, Pb, Zn, Al, Ca, K and Mg), (ii) gas-to-particle conversion (SO42- and NH4+) and (iii) sea salt spray (Cl-, Na+ and Na).
Resumo:
The continued growth of large cities is producing increasing volumes of urban sewage sludge. Disposing of this waste without damaging the environment requires careful management. The application of large quantities of biosolids (treated sewage sludge) to agricultural lands for many years may result in the excessive accumulation of nutrients like phosphorus (P) and thereby raise risks of eutrophication in nearby water bodies. We evaluated the fractionation of P in samples of an Oxisol collected as part of a field experiment in which biosolids were added at three rates to a maize (Zea mays L) plantation over four consecutive years. The biosolids treatments were equivalent to one, two and four times the recommended N rate for maize crops. In a fourth treatment, mineral fertilizer was applied at the rate recommended for maize. Inorganic P forms were extracted with ammonium chloride to remove soluble and loosely bound P; P bound to aluminum oxide (P-Al) was extracted with ammonium fluoride; P bound to iron oxide (P-Fe) was extracted with sodium hydroxide; and P bound to calcium (P-Ca) was extracted with sulfuric acid. Organic P was calculated as the difference between total P and inorganic P. The predominant fraction of P was P-Fe, followed by P-Al and P-Ca. P fractions were positively correlated to the amounts of P applied, except for P-Ca. The low values of P-Ca were due to the advanced weathering processes to which the Oxisol have been subjected, under which forms of P-Ca are converted to P-Fe and P-Al. The fertilization with P via biosolids increased P availability for maize plants even when a large portion of P was converted to more stable forms. Phosphorus content in maize leaves and grains was positively correlated with P fractions in soils. From these results it can be concluded that the application of biosolids in highly weathered tropical clayey soils for many years, even above the recommended rate based on N requirements for maize, tend to be less potentially hazardous to the environment than in less weathered sandy soils because the non-readily P fractions are predominant after the addition of biosolids. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This study deals with the seasonal distribution of Al, Ca, Cu, Fe, K, Mg, Na, Pb and Zn and water soluble ions (Cl-, PO4(3-), NO3-, SO4(2-), HCOO-, CH3COO-, oxalate, succinate, Na+, NH4+, K+, Mg2+ and Ca2+) found in PM10 samples (particulate matter less than 10 mm in diameter) São Paulo City, Brazil, (April 2003-May 2004). Higher atmospheric levels were found for SO4(2-), NO3-, Cl- and PO4(3-) while the main organic anions were oxalate and formate. Atmospheric levels for elements were: Fe > Al > Ca > K > Na > Mg > Zn > Cu > Pb. Some sources were predominant for some species: (i) fuel burning and/or biomass burning (NO3-, HCOO-, C2O4(2-), K+, Mg2+, Ca2+, Fe, Pb, Zn, Al, Ca, K and Mg), (ii) gas-to-particle conversion (SO4(2-) and NH4+) and (iii) sea salt spray (Cl-, Na+ and Na).
Resumo:
Potential desiccation polygons (PDPs) are polygonal surface patterns that are a common feature in Noachian-to-Hesperian-aged phyllosilicate- and chloride-bearing terrains and have been observed with size scales that range from cm-wide (by current rovers) to 10s of meters-wide. The global distribution of PDPs shows that they share certain traits in terms of morphology and geologic setting that can aid identification and distinction from fracturing patterns caused by other processes. They are mostly associated with sedimentary deposits that display spectral evidence for the presence of Fe/Mg smectites, Al-rich smectites or less commonly kaolinites, carbonates, and sulfates. In addition, PDPs may indicate paleolacustrine environments, which are of high interest for planetary exploration, and their presence implies that the fractured units are rich in smectite minerals that may have been deposited in a standing body of water. A collective synthesis with new data, particularly from the HiRISE camera suggests that desiccation cracks may be more common on the surface of Mars than previously thought. A review of terrestrial research on desiccation processes with emphasis on the theoretical background, field studies, and modeling constraints is presented here as well and shown to be consistent with and relevant to certain polygonal patterns on Mars.
Resumo:
The transition from magmatic crystallization to high-temperature metamorphism in deep magma chambers (or lenses) beneath spreading ridges has not been fully described. High-temperature microscopic veins found in olivine gabbros, recovered from Ocean Drilling Program Hole 735B on the Southwest Indian Ridge during Leg 176, yield information on the magmatic-hydrothermal transition beneath spreading ridges. The microscopic veins are composed of high-temperature minerals, (i.e., clinopyroxene, orthopyroxene, brown amphibole, and plagioclase). An important feature of these veins is the 'along-vein variation' in mineralogy, which is correlated with the magmatic minerals that they penetrate. Within grains of magmatic plagioclase, the veins are composed of less calcic plagioclase. In grains of olivine, the veins are composed of orthopyroxene + brown amphibole + plagioclase. In clinopyroxene grains, the veins consist of plagioclase + brown amphibole and are accompanied by an intergrowth of brown amphibole + orthopyroxene. The mode of occurrence of the veins cannot be explained if these veins were crystallized from silicate melts. Consequently, these veins and nearby intergrowths were most likely formed by the reaction of magmatic minerals with fluid phases under the conditions of low fluid/rock ratios. Very similar intergrowths of brown amphibole + orthopyroxene are observed in clinopyroxene grains with 'interfingering' textures. It is believed, in general, that the penetration of seawater does not predate the ductile deformation within Layer 3 gabbros of the slow-spreading ridges. If this is the case, the fluid responsible for the veins did not originate from seawater because the formation of the veins and the interfingering textures preceded ductile deformation and, perhaps, complete solidification of the gabbroic crystal mush. It has been proposed, based on fluid inclusion data, that the exsolution of fluid from the latest-stage magma took place at temperatures >700°C in the slow-spreading Mid-Atlantic Ridge at the Kane Fracture Zone (MARK) area. No obvious mineralogical evidence, however, has been found for these magmatic fluids. The calculated temperatures for the veins and nearby intergrowths found in Hole 735B gabbros are up to 1000°C, and these veins are the most plausible candidate for the mineralogical expression of the migrating magmatic fluids.