980 resultados para ± opal-CT
Resumo:
Oxygen isotope compositions of the interstitial waters have been measured for 21 samples taken from the depth intervals of 1.5 to 398.9 mbsf at Site 798 (Oki Ridge) and 16.5 to 435.6 mbsf at Site 799 (Kita-Yamato Trough) in Japan Sea. The d18O values decrease with depth from -0.49 to -3.38 per mil (SMOW) at Site 798 and from -0.71 to -4.36 per mil (SMOW) at Site 799 corresponding to an average depletion gradient of -0.8 per mil per 100 m. Material balance calculations reveal that the d18O-variations at Sites 798 and 799 were principally controlled by low-temperature alteration of basement basalt and andesite, resulting in negative shifts in pore water d18O values, and by the polymorphic transformations of biogenic opal-A to opal-CT and opal-CT to microquartz, which tend to increase d18O of interstitial waters. Carbonate diagenesis and ash alteration also caused weakly negative shifts in pore water d18O values.
Resumo:
Interstitial waters in sediments below 400 (Site 798) and 435 meters below seafloor (Site 799) have chloride concentrations of 516-527 and 501-515 mM, respectively, lower than the 540 mM of the modern-day Japan Sea. The chemical composition of interstitial waters, bulk sediments, clay-size sediment fraction, and carbonate nodules from Oki Ridge (Site 798) and Kita-Yamato Trough (Site 799), Japan Sea, reflect in-situ diagenetic processes superimposed on geochemical signals that may indicate freshening of Miocene local marginal basin waters. Interstitial waters at both sites exhibit changes in chemical composition which coincide with the occurrence of low-porosity and high-bulk density layers composed of dolomite and opal-CT, which impede diffusive communication with the overlying interstitial waters. Based on interstitial water stable isotope evidence and mass-balance calculations of chloride dilution, diagenetic reactions that involve the release of structural bound water from opal-A and/or clay minerals contribute to the observed geochemical signals, but cannot account for all the measured chloride dilution.
Resumo:
Among the groups of oceanic microfossils, only Radiolaria occur in abundances and preservation states sufficient to provide biostratigraphic control for restricted intervals within sediments recovered in Hole 1223A. The distribution of these microfossils has been divided into four major intervals, A-D. Radiolaria distribution Interval A occupies the depth range 0-3.0 meters below seafloor (mbsf), where the abundance of specimens is very low and preservation is poor. Radiolaria distribution Interval B occupies the depth range 3.02-7.1 mbsf. Radiolaria in Interval B are locally rare to abundant and well preserved, and assemblages range in age from pure early Eocene to early Eocene admixed with late Neogene taxa. Radiolaria distribution Interval C occupies the depth range 7.1-36.99 mbsf and is characterized by sediments either barren of microfossils or containing extremely rare early Eocene specimens. Radiolaria distribution Interval D occupies the depth range 36.99-38.7 mbsf (base of the recovered sedimentary section), where early Eocene Radiolaria are present in rare to common frequencies, but opal-A to opal-CT recrystallization has degraded the preservation state. The late Neogene assemblage of Radiolaria distribution Interval B is dated at 1.55-2.0 Ma, based on occurrences of Eucyrtidium matuyamai, Lamprocyclas heteroporos, and Theocorythium trachelium trachelium. The early Eocene assemblage of Radiolaria distribution Intervals B and D is somewhat problematically assigned to the Buryella clinata Zone.
Resumo:
The mineralogy of the lower Miocene and Quaternary sediments of the drillcore CRP-1 (McMurdo Sound, Ross Sea, Antarctica) has been analysed using the X-ray diffraction method. Quartz, plagioclase feldspars, K-feldspars are the most important non-clay minerals. Amphiboles occur throughout the core in minor amounts. The composition of the sediments points to an origin in the Transantarctic Mountains for the majority of the detrital components. There, the plutonic and metamorphic rocks of the basement, the sediments of the Beacon Supergroup and the volcanic rocks of the Ferrar Dolerite could serve as possible source lithologies. The quartz abundance is strongly linked to the gain size of the sediments with maxima correlating with coarse gain sizes. The downcore distribution of the other detrital minerals is relatively invariable, and does not indicate a major change in the source area during the time represented by the CRP-1 sediments. Some diagenetic alteration of the sediments is indicated by the occurrence of minor amounts of opal-CT and by some clinoptilolite below110 m depth.
Resumo:
Ocean Drilling Program sampling of the distal passive margin of South China at Sites 1147 and 1148 has yielded clay-rich hemipelagic sediments dating to 32 Ma (Oligocene), just prior to the onset of seafloor spreading in the South China Sea. The location of the drill sites offshore the Pearl River suggests that this river, or its predecessor, may have been the source of the sediment in the basin, which accounts for only not, vert, similar ~1.8% of the total Neogene sediment in the Asian marginal seas. A mean erosion depth of not, vert, similar ~1 km over the current Pearl River drainage basin is sufficient to account for the sediment volume on the margin. Two-dimensional backstripping of across-margin seismic profiles shows that sedimentation rates peaked during the middle Miocene (11-16 Ma) and the Pleistocene (since 1.8 Ma). Nd isotopic analysis of clays yielded epsilonNd values of -7.7 to -11.0, consistent with the South China Block being the major source of sediment. More positive epsilonNd values during and shortly after rifting compared to later sedimentation reflect preferential erosion at that time of more juvenile continental arc rocks exposed along the margin. As the drainage basin developed and erosion shifted from within the rift to the continental interior epsilonNd values became more negative. A rapid change in the clay mineralogy from smectite-dominated to illite dominated at not, vert, similar 15.5 Ma, synchronous with middle Miocene rapid sedimentation, mostly reflects a change to a wetter, more erosive climate. Evidence that the elevation of the Tibetan Plateau and erosion in the western Himalaya both peaked close to this time supports the suggestion that the Asian monsoon became much more intense at that time, much earlier than the 8.5 Ma age commonly accepted.
Resumo:
Clay mineral assemblages in sediments from ANDRILL drill core AND-2A were used to reconstruct the Neogene palaeoenvironment. For the first time a clay mineral data set can be presented for southern McMurdo Sound, Ross Sea, Antarctica, that covers an expanded and fairly continuous Lower and Middle Miocene section. Although the occurrence of some authigenic smectites, zeolites and opal-CT documents diagenetic processes, the clay mineral assemblages allow a subdivision of the core into three intervals that reflect changes in provenance and volcanic activity. Interval I (1000-440 mbsf, 20.0-16.5 Ma) is characterised by a dominant sediment source in the Transantarctic Mountains. Frequent and short-term changes in the illite and smectite concentrations were caused by the influx of volcanic sediment components from southern McMurdo Sound and by diagenesis. Interval II (440-225 mbsf, 16.5-15.0 Ma) has much more uniform illite and smectite contents. The assemblage is derived from the Transantarctic Mountains. Interval III (225-0 mbsf, 15.0-0 Ma, containing major hiatuses) shows a distinctly enhanced volcanic influence and sediment components that come from the south of McMurdo Sound. The AND-2A clay mineral assemblages indicate persistent physical weathering conditions and do not mirror the Mid-Miocene Climatic Optimum. They indicate that the climatic changes were probably not strong enough to cause a modification in the weathering regime on the Antarctic continent.
Resumo:
Cretaceous chert and porcellanite recovered at Site 436, east of northern Honshu, Japan, are texturally and mineralogically similar to siliceous rocks of comparable age at Sites 303, 304, and 307 in the northwest Pacific. These rocks probably were formed by impregnation of the associated pelagic clay with locally derived silica from biogenic and perhaps some volcanic debris. Fine horizontal laminations are the only primary sedimentary structures, suggesting minimal reworking and transport. Collapse breccias and incipient chert nodules are diagenetic features related to silicification and compaction of the original sediment. Disordered opal-CT (d[101] = 4.09 Å) and microgranular quartz (crystallinity index < 1.0) are the two common silica minerals present. Some samples show quartz replacing this poorly ordered opal- CT, supporting the notion that opal-CT does not become completely ordered (i.e., d[101] = 4.04 Å) in some cases before being converted to quartz. The present temperature calculated for the depth of the shallowest chert and porcellanite at this site is 30 °C; this may represent the temperature of conversion of opal-CT to quartz. High reflection coefficients (0.29-0.65) calculated for the boundary between chert-porcellanite and clay-claystone support the common observation that chert is a strong seismic reflector in deep-sea sedimentary sections.
Resumo:
Sixty-nine sediment samples of Deep Sea Drilling Project Leg 62 were mineralogically examined by X-ray diffractometry, and gasometrically for their carbonate content. Most sediments were found to be carbonate-rich; some have up to 97% CaCO3. Many chalk or limestone samples contain chert, accounting for high quartz percentages in some analyzed samples.
Resumo:
Water extracted from opal-CT ("porcellanite", "cristobalite"), granular microcrystalline quartz (chert), and pure fibrous quartz (chalcedony) in cherts from the JOIDES Deep Sea Drilling Project is 56? to 87? depleted in deuterium relative to the water in which the silica formed. This large fractionation is similar in magnitude and sign to that observed for hydroxyl in clay minerals and suggests that water extracted from these forms of silica has been derived from hydroxyl groups within the silica. Delta18O-values for opal-CT at sites 61, 64, 70B and 149 vary from 34.3? to 37.2? and show no direct correlation with depth of burial. Granular microcrystaUine quartz in these cores is 0.5 ? depleted in 18O relative to coexisting opal-CT at sediment depths of 100 m and the depletion increases to 2? for sediments buried below 384 m. These relationships suggest that opal-CT forms before significant burial while granular microcrystalline quartz forms during deeper burial at warmer temperatures. The temperature at which opal-CT forms is thus probably approximately equal to the temperature of the overlying bottom water. Isotopic temperatures deduced for opal-CT formation are preliminary and very approximate, but yield Eocene deep-water temperatures of 5-13°C, and 6°C for the upper Cretaceous sample. Pure euhedral quartz crystals lining a cavity in opal-CT at 388 m in core 8-70B-4-CC have a ~delta18O value of +29.8? and probably formed near maximum burial. The isotopic temperature is approximately 32 ° C.
Resumo:
Considerable postsedimentational alteration of fine dispersed minerals in Cretaceous sedimentary sequences was found in three deep-sea drillholes (163, 164, 169). Original Fe-montmorillonites formed from basalts were converted during lithification to mixed-layer montmorillonite-hydromicas and then to pure hydromicas (celadonites). An assumption that the minerals were originally of authigenic-diagenetic composition is based on a broad spectrum of other diagenetic minerals present: silica group from opal A to opal CT and quartz, clinoptilolite and palygorskite. In addition, quartz-hydromica ratio is strikingly atypical of aeolian transport.