980 resultados para (2,4-dichlorophenoxy)acetic acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exploitation of the electronic properties of carbon nanotubes for the development of voltammetric and amperometric sensors to monitor analytes of environmental relevance has increased in recent years. This work reports the development of a biomimetic sensor based on a carbon paste modified with 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin iron (III) chloride (a biomimetic catalyst of the P450 enzyme) and multi-wall carbon nanotubes (MWCNT), for the sensitive and selective detection of the herbicide 2,4- dichlorophenoxyacetic acid (2,4-D). The sensor was evaluated using cyclic voltammetry and amperometry, for electrochemical characterization and quantification purposes, respectively. Amperometric analyses were carried out at -100 mV vs. Ag/AgCl(KClsat), using a 0.1 mol L-1 phosphate buffer solution at pH 6.0 as the support electrolyte. Under these optimized analytical conditions, the sensor showed a linear response between 9.9 × 10-6 and 1.4 × 10-4 mol L-1, a sensitivity of 1.8 × 104 (±429) μA L mol -1, and limits of detection and quantification of 2.1 × 10 -6 and 6.8 × 10-6 mol L-1, respectively. The incorporation of functionalized MWCNT in the carbon paste resulted in a 10-fold increase in the response, compared to that of the biomimetic sensor without MWCNT. In addition, the low applied potential (-100 mV) used to obtain high sensitivity also contributed to the excellent selectivity of the proposed sensor. The viability of the application of this sensor for analysis of soil samples was confirmed by satisfactory recovery values, with a mean of 96% and RSD of 2.1% (n = 3). © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An accurate, sensitive, precise and rapid reversed-phase high-performance liquid chromatographic method was successfully developed and validated for the determination of caffeic acid (CA) in emulsions. The best separation was achieved on a 250 × 4.6 mm, 5.0 µm particle size RP18 XDB Waters column using ethanol and purified water (40:60 v/v) adjusted to pH 2.5 with acetic acid as the mobile phase at a flow rate of 0.7 mL/min. Ultraviolet detection was performed at 325 nm at ambient column temperature (25°C). The method was linear over the concentration range of 10-60 µg/mL (r(2) = 0.9999) with limits of detection and quantification of 1.44 and 4.38 µg/mL, respectively. CA was subjected to oxidation, acid, base and neutral degradation, as well as photolysis and heat as stress conditions. There were no interfering peaks at or near the retention time of CA. The method was applied to the determination of CA in standard and pharmaceutical products with excellent recoveries. The method is applicable in the quality control of CA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The action of man has led, over the years, major impacts on the environment, especially in aquatic ecosystems, leading to an impairment of water quality, considered one of the essential factors for the maintenance of vital functions and consequently the life of the planet. Among the activities considered a risk for the environment are linked to pollution from many sources and even entire watersheds, whether by industrial waste, sewage, or for substances used in agriculture, such as pesticides, herbicides and fertilizers. The (2,4-D) 2,4- dichlorophenoxyacetic acid is used worldwide, and the fact that its genotoxicity is proven by several studies and by its long persistence in soil, which enables the leaching and percolation of compounds affecting water bodies, toxicity studies are relevant and justifiable. Thus, this study aimed to evaluate the toxicity of 2,4-D by examining the liver of the fish Oreochromis niloticus exposed to different dilutions. Portions of liver were collected and fixed for histological and histochemical techniques to detect total proteins, polysaccharides and lipids. lipids. Treatment with 2,4-D herbicide apparently did not alter the lipid profiles, the accumulation of polysaccharides, and the presence of total proteins. The 2.5 and 5.0% were lethal to fish. These mortalities are probably of high toxic and cytotoxic potential of 2,4-D herbicide results. Several histopathological changes were found, such as: loss of cytoplasmic integrity, loss of cell limit, nuclear deformation, vacuolated cytoplasm, tissue disorganization and hydropic degeneration. Statistically significant changes were: hydropic degeneration and vacuolated cytoplasm. It is concluded, therefore, that the qualitative morphological analysis is an important method for observing changes in liver toxicology studies. As the O. niloticus species is an efficient biological indicator of water pollution by 2,4-D

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The action of man has led, over the years, major impacts on the environment, especially in aquatic ecosystems, leading to an impairment of water quality, considered one of the essential factors for the maintenance of vital functions and consequently the life of the planet. Among the activities considered a risk for the environment are linked to pollution from many sources and even entire watersheds, whether by industrial waste, sewage, or for substances used in agriculture, such as pesticides, herbicides and fertilizers. The (2,4-D) 2,4- dichlorophenoxyacetic acid is used worldwide, and the fact that its genotoxicity is proven by several studies and by its long persistence in soil, which enables the leaching and percolation of compounds affecting water bodies, toxicity studies are relevant and justifiable. Thus, this study aimed to evaluate the toxicity of 2,4-D by examining the liver of the fish Oreochromis niloticus exposed to different dilutions. Portions of liver were collected and fixed for histological and histochemical techniques to detect total proteins, polysaccharides and lipids. lipids. Treatment with 2,4-D herbicide apparently did not alter the lipid profiles, the accumulation of polysaccharides, and the presence of total proteins. The 2.5 and 5.0% were lethal to fish. These mortalities are probably of high toxic and cytotoxic potential of 2,4-D herbicide results. Several histopathological changes were found, such as: loss of cytoplasmic integrity, loss of cell limit, nuclear deformation, vacuolated cytoplasm, tissue disorganization and hydropic degeneration. Statistically significant changes were: hydropic degeneration and vacuolated cytoplasm. It is concluded, therefore, that the qualitative morphological analysis is an important method for observing changes in liver toxicology studies. As the O. niloticus species is an efficient biological indicator of water pollution by 2,4-D

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2.4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe2+ ([Fe2+](0)) from 1.0 up to 2.5 mM, the rate in mmol of H2O2 fed into the system (F-H2O2,F-in) from 3.67 up to 7.33 mmol of H2O2/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bistriazoles, 1,3-bis(1,2,4-triazol-4-yl)propane (tr2pr) and 1,3-bis(1,2,4-triazol-4-yl)adamantane (tr2ad), were examined in combination with the rigid tetratopic 1,3,5,7-adamantanetetracarboxylic acid (H4-adtc) platform for the construction of neutral heteroleptic copper(II) metal−organic frameworks. Two coordination polymers, [{Cu4(OH)2(H2O)2}{Cu4(OH)2}(tr2pr)2(H-adtc)4]·2H2O (1) and [Cu4(OH)2(tr2ad)2(H-adtc)2(H2O)2]·3H2O (2), were synthesized and structurally characterized. In complexes 1 and 2, the N1,N2-1,2,4-triazolyl (tr) and μ3-OH− groups serve as complementary bridges between adjacent metal centers supporting the tetranuclear dihydroxo clusters. The structure of 1 represents a unique association of two different kinds of centrosymmetrical {Cu4(OH)2} units in a tight 3D framework, while in compound 2, another configuration type of acentric tetranuclear metal clusters is organized in a layered 3,6-hexagonal motif. In both cases, the {Cu4(OH)2} secondary building block and trideprotonated carboxylate H-adtc3− can be viewed as covalently bound six- and three-connected nodes that define the net topology. The tr ligands, showing μ3- or μ4-binding patterns, introduce additional integrating links between the neighboring {Cu4(OH)2} fragments. A variable-temperature magnetic susceptibility study of 2 demonstrates strong antiferromagnetic intracluster coupling (J1 = −109 cm−1 and J2 = −21 cm−1), which combines for the bulk phase with a weak antiferromagnetic intercluster interaction (zj = −2.5 cm−1).