999 resultados para zeolite ZSM-5


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Australian natural zeolite was collected, characterised and employed for basic dye adsorption in aqueous solution. The natural zeolite is mainly composed of clinoptiloite, quartz and mordenite and has cation-exchange capacity of 120 meq/100 g. The natural zeolite presents higher adsorption capacity for methylene blue than rhodamine B with the maximal adsorption capacity of 2.8 x 10(-5) and 7.9 x 10(-5) Mot/g at 50 degrees C for rhodamine B and methylene blue, respectively. Kinetic studies indicated that the adsorption followed the pseudo second-order kinetics and could be described as two-stage diffusion process. The adsorption isotherm could be fitted by the Langmuir and Freundlich models. Thermodynamic calculations showed that the adsorption is endothermic process with Delta H degrees at 2.0 and 8.7 kJ/mol for rhodamine B and methylene blue. It has also found that the regenerated zeolites by high-temperature calcination and Fenton oxidation showed similar adsorption capacity but lower than the fresh sample. Only 60% capacity could be recovered by the two regeneration techniques. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to describe the current state of atomistic simulation of zeolite surfaces by describing what has been achieved and to show how the surface structures are modelled. This is illustrated by using atomistic simulation techniques to model the {100} surface of zeolite LTA. The pure siliceous and aluminated CaNa-A and Na-A with Si/Al = 1 structures were considered. The surface showed three stable terminations but the relative stability varied with composition. The resulting surface structures and geometries show extensive framework distortions, especially in the aluminated forms where the cations formed strong interaction with the zeolite framework thereby increasing their adsorption energies and stabilising their cation position. © 2001 Published by Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years there has been growing interest in the use of dimethyl ether (DME) as an alternative fuel. In this study, the adsorption of DME on molecular sieves 4Å (Mol4A) and 5Å (Mol5A) has been experimentally investigated using the volumetric adsorption method. Data on the adsorption isotherms, heats of adsorption, and adsorption kinetic have been obtained and used to draw conclusions and compare the performance of the two adsorbents. Within the conditions considered, the adsorption capacity of Mol5A was found to be around eight times higher than the capacity of Mol4A. Low temperature adsorption and thermal pre-treatment of the adsorbents in vacuum were observed to be favourable for increased adsorption capacity. The adsorption isotherms for both adsorbent were fitted to the Freundlich model and the corresponding model parameters are proposed. The adsorption kinetic analysis suggest that the DME adsorption on Mol5A is controlled by intracrystalline diffusion resistance, while on Mol4A it is mainly controlled by surface layering resistance with the diffusion only taking place at the start of adsorption and for a very limited short time. The heats of adsorption were calculated by a calorimetric method based on direct temperature measurements inside the adsorption cell. Isosteric heats, calculated by the thermodynamic approach (Clasius-Clapeyron equation), have consistently shown lower values. The maximum heat of adsorption was found to be 25.9kJmol-1 and 20.1kJmol-1 on Mol4A and Mol5A, respectively; thus indicating a physisorption type of interactions. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mild template removal of microcrystalline beta zeolite, based on Fenton chemistry, was optimized. Fenton detemplation was studied in terms of applicability conditions window, reaction rate and scale up. TGA and CHN elemental analysis were used to evaluate the detemplation effectiveness, while ICP, XRD, LPHR-Ar physisorption, and 27Al MAS NMR were applied to characterize the structure and texture of the resulting materials. The material properties were compared to calcination. By understanding the interplay of relevant parameters of the Fenton chemistry, the process can be optimized in order to make it industrially attractive for scale-up. The H2O2 utilization can be minimized down to 15 mL H2O2/g (88 °C, 30 ppm Fe), implying a high solid concentration and low consumption of H2O2. When Fe concentration must be minimized, values as low as 5 ppm Fe can be applied (88 °C, 30 mL H2O2/g), to achieve full detemplation. The reaction time to completeness can be reduced to 5 h when combining a Fe-oxalate catalyst with UV radiation. The protocol was scaled up to 100 times larger its original recipe. In terms of the material's properties, the scaled material is structurally comparable to the calcined counterpart (comparable Si/Al and XRD patterns), while it displays benefits in terms of texture and Al-coordination, the latter with full preservation of the tetrahedral Al

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The L-dopa is the immediate precursor of the neurotransmitter dopamine. Unlike dopamine, L-dopa easily enters the central nervous system and is used in the treatment of Parkinson's disease. A sensitive and selective method is presented for the voltammetric determination of L-dopa in pharmaceutical formulations using a carbon paste electrode modified with trinuclear ruthenium ammine complex [(NH3)(5)Ru-III-O-Ru-IV(NH3)(4)-O-Ru-III(NH3)(5)](6+) (Ru-red) incorporated in NaY zeolite. The parameters which influence on the electrode response (paste composition, potential scan rate, pH and interference) were also investigated. The optimum conditions were found to an electrode composition (m/m) of 25% zeolite containing 6.7% Ru, 50% graphite and 25% mineral oil in acetate buffer at pH 4.8. Voltammetric peak currents showed a linear response for L-dopa concentration in the range between 1.2 x 10(-4) and 1.0 x 10(-2) Mol l(-1) (r = 0.9988) with a detection limit of 8.5 x 10(-5) mol l(-1). The variation coefficient for a 1.0 x 10(-3) mol l(-1) L-dopa (n = 10) was 5.5%. The results obtained for L-dopa in pharmaceutical formulations (tablet) was in agreement with compared official method. In conclusion, this study has illustrated that the proposed electrode modified with Ru-red incorporated zeolite is suitable valuable for selective measurements of L-dopa. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A NOx reduction efficiency higher than 95% with NH3 slip less than 30 ppm is desirable for heavy-duty diesel (HDD) engines using selective catalytic reduction (SCR) systems to meet the US EPA 2010 NOx standard and the 2014-2018 fuel consumption regulation. The SCR performance needs to be improved through experimental and modeling studies. In this research, a high fidelity global kinetic 1-dimensional 2-site SCR model with mass transfer, heat transfer and global reaction mechanisms was developed for a Cu-zeolite catalyst. The model simulates the SCR performance for the engine exhaust conditions with NH3 maldistribution and aging effects, and the details are presented. SCR experimental data were collected for the model development, calibration and validation from a reactor at Oak Ridge National Laboratory (ORNL) and an engine experimental setup at Michigan Technological University (MTU) with a Cummins 2010 ISB engine. The model was calibrated separately to the reactor and engine data. The experimental setup, test procedures including a surrogate HD-FTP cycle developed for transient studies and the model calibration process are described. Differences in the model parameters were determined between the calibrations developed from the reactor and the engine data. It was determined that the SCR inlet NH3 maldistribution is one of the reasons causing the differences. The model calibrated to the engine data served as a basis for developing a reduced order SCR estimator model. The effect of the SCR inlet NO2/NOx ratio on the SCR performance was studied through simulations using the surrogate HD-FTP cycle. The cumulative outlet NOx and the overall NOx conversion efficiency of the cycle are highest with a NO2/NOx ratio of 0.5. The outlet NH3 is lowest for the NO2/NOx ratio greater than 0.6. A combined engine experimental and simulation study was performed to quantify the NH3 maldistribution at the SCR inlet and its effects on the SCR performance and kinetics. The uniformity index (UI) of the SCR inlet NH3 and NH3/NOx ratio (ANR) was determined to be below 0.8 for the production system. The UI was improved to 0.9 after installation of a swirl mixer into the SCR inlet cone. A multi-channel model was developed to simulate the maldistribution effects. The results showed that reducing the UI of the inlet ANR from 1.0 to 0.7 caused a 5-10% decrease in NOx reduction efficiency and 10-20 ppm increase in the NH3 slip. The simulations of the steady-state engine data with the multi-channel model showed that the NH3 maldistribution is a factor causing the differences in the calibrations developed from the engine and the reactor data. The Reactor experiments were performed at ORNL using a Spaci-IR technique to study the thermal aging effects. The test results showed that the thermal aging (at 800°C for 16 hours) caused a 30% reduction in the NH3 stored on the catalyst under NH3 saturation conditions and different axial concentration profiles under SCR reaction conditions. The kinetics analysis showed that the thermal aging caused a reduction in total NH3 storage capacity (94.6 compared to 138 gmol/m3), different NH3 adsorption/desorption properties and a decrease in activation energy and the pre-exponential factor for NH3 oxidation, standard and fast SCR reactions. Both reduction in the storage capability and the change in kinetics of the major reactions contributed to the change in the axial storage and concentration profiles observed from the experiments.