988 resultados para yellowfin, microsatellites, genetic ATCO
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Currently, biodiversity is threatened by several factors often associated with human population growth and the extension of areas occupied by human activity. In particular, freshwater fish fauna is affected by overfishing, deforestation, water pollution, introduction of exotic species and habitat fragmentation promoted by hydroelectric dams, among other environmental impact factors. Several action plans to preserve ichthyofauna biodiversity have been adopted; however, these plans frequently cover only a small number of species, and decisions are often made without strong scientific support. This study aimed to evaluate the genetic aspects of wild groups of Brycon orbignyanus, an endangered fish species, using microsatellites and D-loop regions to identify the genetic structure of the samples and to establish priority areas for conservation based on the genetic patterns of this species. The results indicated that the samples showed levels of genetic variability compatible with others studies with Neotropical fishes. However, the results obtained in the analysis of molecular variance (AMOVA) for microsatellites (F (ST) = 0.258) and D-loop (F (ST) = 0.234) and the interpopulation fixation index revealed that B. orbignyanus was structured in different subpopulations in the La Plata River basin; the areas with better environmental conditions also showed subgroups with higher rates of genetic variability. Future conservation actions addressing these sites should consider two different management units: the complex formed by the Ivinhema River, Upper Parana, Camargo Port and Ilha Grande groups; and the complex formed by the Verde River and Sucuriu River groups.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Many studies use genetic markers to explore population structure and variability within species. However, only a minority use more than one type of marker and, despite increasing evidence of a link between heterozygosity and individual fitness, few ask whether diversity correlates with population trajectory. To address these issues, we analyzed data from the Steller’s sea lion, Eumetiopias jubatus, where three stocks are distributed over a vast geographical range and where both genetic samples and detailed demographic data have been collected from many diverse breeding colonies. To previously published mitochondrial DNA(mtDNA) and microsatellite data sets,we have added new data for amplified fragment length polymorphism (AFLP) markers, comprising 238 loci scored in 285 sea lions sampled from 23 natal rookeries. Genotypic diversity was low relative to most vertebrates, with only 37 loci (15.5%) being polymorphic. Moreover, contrasting geographical patterns of genetic diversity were found at the three markers, with Nei’s gene diversity tending to be higher for AFLPs and microsatellites in rookeries of the western and Asian stocks, while the highest mtDNA values were found in the eastern stock. Overall, and despite strongly contrasting demographic histories, after applying phylogenetic correction we found little correlation between genetic diversity and either colony size or demography. In contrast, we were able to show a highly significant positive relationship between AFLP diversity and current population size across a range of pinniped species, even though equivalent analyses did not reveal significant trends for either microsatellites or mtDNA.
Resumo:
Aedes aegypti is the most important vector of dengue viruses in tropical and subtropical regions. Because vaccines are still under development, dengue prevention depends primarily on vector control. Population genetics is a common approach in research involving Ae. aegypti. In the context of medical entomology, wing morphometric analysis has been proposed as a strong and low-cost complementary tool for investigating population structure. Therefore, we comparatively evaluated the genetic and phenotypic variability of population samples of Ae. aegypti from four sampling sites in the metropolitan area of Sao Paulo city, Brazil. The distances between the sites ranged from 7.1 to 50 km. This area, where knowledge on the population genetics of this mosquito is incipient, was chosen due to the thousands of dengue cases registered yearly. The analysed loci were polymorphic, and they revealed population structure (global F-ST = 0.062; p < 0.05) and low levels of gene flow (Nm = 0.47) between the four locations. Principal component and discriminant analyses of wing shape variables (18 landmarks) demonstrated that wing polymorphisms were only slightly more common between populations than within populations. Whereas microsatellites allowed for geographic differentiation, wing geometry failed to distinguish the samples. These data suggest that microevolution in this species may affect genetic and morphological characters to different degrees. In this case, wing shape was not validated as a marker for assessing population structure. According to the interpretation of a previous report, the wing shape of Ae. aegypti does not vary significantly because it is stabilised by selective pressure. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Plasmodium malariae is a protozoan parasite that causes malaria in humans and is genetically indistinguishable from Plasmodium brasilianum, a parasite infecting New World monkeys in Central and South America. P. malariae has a wide and patchy global distribution in tropical and subtropical regions, being found in South America, Asia, and Africa. However, little is known regarding the genetics of these parasites and the similarity between them could be because until now there are only a very few genomic sequences available from simian Plasmodium species. This study presents the first molecular epidemiological data for P. malariae and P. brasilianum from Brazil obtained from different hosts and uses them to explore the genetic diversity in relation to geographical origin and hosts. By using microsatellite genotyping, we discovered that of the 14 human samples obtained from areas of the Atlantic forest, 5 different multilocus genotypes were recorded, while in a sample from an infected mosquito from the same region a different haplotype was found. We also analyzed the longitudinal change of circulating plasmodial genetic profile in two untreated non-symptomatic patients during a 12-months interval. The circulating genotypes in the two samples from the same patient presented nearly identical multilocus haplotypes (differing by a single locus). The more frequent haplotype persisted for almost 3 years in the human population. The allele Pm09-299 described previously as a genetic marker for South American P. malariae was not found in our samples. Of the 3 non-human primate samples from the Amazon Region, 3 different multilocus genotypes were recorded indicating a greater diversity among isolates of P. brasilianum compared to P. malariae and thus, P. malariae might in fact derive from P. brasilianum as has been proposed in recent studies. Taken together, our data show that based on the microsatellite data there is a relatively restricted polymorphism of P. malariae parasites as opposed to other geographic locations. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background The etiology of idiopathic scoliosis remains unknown and different factors have been suggested as causal. Hereditary factors can also determine the etiology of the disease; however, the pattern of inheritance remains unknown. Autosomal dominant, X-linked and multifactorial patterns of inheritances have been reported. Other studies have suggested possible chromosome regions related to the etiology of idiopathic scoliosis. We report the genetic aspects of and investigate chromosome regions for adolescent idiopathic scoliosis in a Brazilian family. Methods Evaluation of 57 family members, distributed over 4 generations of a Brazilian family, with 9 carriers of adolescent idiopathic scoliosis. The proband presented a scoliotic curve of 75 degrees, as determined by the Cobb method. Genomic DNA from family members was genotyped. Results Locating a chromosome region linked to adolescent idiopathic scoliosis was not possible in the family studied. Conclusion While it was not possible to determine a chromosome region responsible for adolescent idiopathic scoliosis by investigation of genetic linkage using microsatellites markers during analysis of four generations of a Brazilian family with multiple affected members, analysis including other types of genomic variations, like single nucleotide polymorphisms (SNPs) could contribute to the continuity of this study.
Resumo:
In this study we have analysed the genetic variability in ca. 700 samples belonging to six species of genus Lepus using maternal and biparental molecular markers (mitochondrial DNA, microsatellites, Single Nucleotide Polimorphisms). We aimed to reconstruct the phylogenetic relationships of species of hares living in Europe, and assess the occurrence of hybridization between the European hare Lepus europaeus and the Italian hare Lepus corsicanus. Results showed a deep genetic differentiation and absence of hybridization between L. corsicanus and L. europaeus, confirming that they are distinct and distantly related biological species. In contrast, we showed small genetic distances and a close phylogenetic relationship between the Italian hare and Cantabrian hare L. castroviejoi, which suggest a deeper evaluation of their taxonomic status. Populations of L. corsicanus are geographically differentiated. In particular, the peninsular and Sicilian populations of Italian hares are sharply genetically distinct, which calls for avoiding any translocation between Italy and Sicily. Information on genetic variability and population structure is being used to implement the Italian Action Plan for L. corsicanus.
Resumo:
The Geoffroy’s bat Myotis emarginatus is mainly present in southern, south-eastern and central Europe (Červerný, 1999) and is often recorded from northern Spain (Quetglas, 2002; Flaquer et al., 2004). It has demonstrated the species’ preference for forest. Myotis capaccinii, confined to the Mediterranean (Guille´n, 1999), is classified as ‘vulnerable’ on a global scale (Hutson, Mickleburgh & Racey, 2001). In general, the species preferred calm waters bordered by well-developed riparian vegetation and large (> 5 m) inter-bank distances (Biscardi et al. 2007). In this study we present the first results about population genetic structure of these two species of genus Myotis. We used two methods of sampling: invasive and non-invasive techniques. A total of 323 invasive samples and a total of 107 non-invasive samples were collected and analyzed. For Myotis emarginatus we have individuated for the first time a set of 7 microsatellites, which can work on this species, started from a set developed on Myotis myotis (Castella et al. 2000). We developed also a method for analysis of non-invasive samples, that given a good percentage of positive analyzed samples. The results have highlighted for the species Myotis emarginatus the presence on the European territory of two big groups, discovered by using the microsatellites tracers. On this species, 33 haplotypes of Dloop have been identified, some of them are presented only in some colonies. We identified respectively 33 haplotypes of Dloop and 10 of cytB for Myotis emarginatus and 25 of dloop and 15 of cytB for Myotis capaccinii. Myotis emarginatus’ results, both microsatellites and mtDNA, show that there is a strong genetic flow between different colonies across Europe. The results achieved on Myotis capaccinii are very interesting, in this case either for the microsatellites or the mitochondrial DNA sequences, and it has been highlighted a big difference between different colonies.
Resumo:
There is constant pressure to improve evaluation of animal genetic resources in order to prevent their erosion. Maintaining the integrity of livestock species as well as their genetic diversity is of paramount interest for long-term agricultural policies. One major use of DNA techniques in conservation is to reveal genetic diversity within and between populations. Forty-one microsatellites were analysed to assess genetic diversity in nine Swiss sheep breeds and to measure the loss of the overall diversity when one breed would become extinct. The expected heterozygosities varied from 0.65 to 0.74 and 10.8% of the total genetic diversity can be explained by the variation among breeds. Based on the proportion of shared alleles, each of the nine breeds were clearly defined in their own cluster in the neighbour-joining tree describing the relationships among the breeds. Bayesian clustering methods assign individuals to groups based on their genetic similarity and infer the number of populations. In STRUCTURE, this approach pooled the Valais Blacknose and the Valais Red. With BAPS method the two Valais sheep breeds could be separated. Caballero & Toro approach (2002) was used to calculate the loss or gain of genetic diversity when each of the breeds would be removed from the set. The changes in diversity based on between-breed variation ranged from -12.2% (Valais Blacknose) to 0% (Swiss Black Brown Mountain and Mirror Sheep); based on within-breed diversity the removal of a breed could also produce an increase in diversity (-0.6% to + 0.6%). Allelic richness ranged from 4.9 (Valais Red) to 6.7 (Brown Headed Meat sheep and Red Engadine Sheep). Breed conservation decisions cannot be limited to genetic diversity alone. In Switzerland, conservation goals are embedded in the desire to carry the cultural legacy over to future generations.
Resumo:
Natural selection is one of the major factors in the evolution of all organisms. Detecting the signature of natural selection has been a central theme in evolutionary genetics. With the availability of microsatellite data, it is of interest to study how natural selection can be detected with microsatellites. ^ The overall aim of this research is to detect signatures of natural selection with data on genetic variation at microsatellite loci. The null hypothesis to be tested is the neutral mutation theory of molecular evolution, which states that different alleles at a locus have equivalent effects on fitness. Currently used tests of this hypothesis based on data on genetic polymorphism in natural populations presume that mutations at the loci follow the infinite allele/site models (IAM, ISM), in the sense that at each site at most only one mutation event is recorded, and each mutation leads to an allele not seen before in the population. Microsatellite loci, which are abundant in the genome, do not obey these mutation models, since the new alleles at such loci can be created either by contraction or expansion of tandem repeat sizes of core motifs. Since the current genome map is mainly composed of microsatellite loci and this class of loci is still most commonly studied in the context of human genome diversity, this research explores how the current test procedures for testing the neutral mutation hypothesis should be modified to take into account a generalized model of forward-backward stepwise mutations. In addition, recent literature also suggested that past demographic history of populations, presence of population substructure, and varying rates of mutations across loci all have confounding effects for detecting signatures of natural selection. ^ The effects of the stepwise mutation model and other confounding factors on detecting signature of natural selection are the main results of the research. ^
Population genetic and dispersal modeling data for Bathymodiolus mussels from the Mid-Atlantic Ridge
Resumo:
The zip folder comprises a text file and a gzipped tar archive. 1) The text file contains individual genotype data for 90 SNPs, 9 microsatellites and the mitochondrial ND4 gene that were determined in deep-sea hydrothermal vent mussels from the Mid-Atlantic Ridge (genus Bathymodiolus). Mussel specimens are grouped according to the population (pop)/location from which they have been sampled (first column). The remaining columns contain the respective allele/haplotype codes for the different genetic loci (names in the header line). The data file is in CONVERT format and can be directly transformed into different input files for population genetic statistics. 2) The tar archive contains NetCDF files with larval dispersal probabilities for simulated annual larval releases between 1998 and 2007. For each simulated vent location (Menez Gwen, Lucky Strike, Rainbow, Vent 1-10) two NetCDF files are given, one for an assumed pelagic larval duration of 1 year and the other one for an assumed pelagic larval duration of 6 months (6m).