981 resultados para workshop-based tutorials
Resumo:
The hazards associated with high voltage three phase inverters ond the rotating sha@s of large electrical machines have resulted in most of the engineering courses covering these topics to be predominantly theoretical. This paper describes a set of purpose built, low voltage and low cost teaching equipment which allows the “hands on I’ instruction of three phase inverters and rotating machines. By using low voltages, the student can experiment freely with the motors and inverter and can access all of the current and voltage waveforms, which until now could only be studied in text books or observed as part of laboratory demonstrations. Both the motor and the inverter designs are optimized for teaching purposes, cost around $25 and can be made with minimal effort.
Resumo:
It is argued that the truth status of emergent properties of complex adaptive systems models should be based on an epistemology of proof by constructive verification and therefore on the ontological axioms of a non-realist logical system such as constructivism or intuitionism. ‘Emergent’ properties of complex adaptive systems (CAS) models create particular epistemological and ontological challenges. These challenges bear directly on current debates in the philosophy of mathematics and in theoretical computer science. CAS research, with its emphasis on computer simulation, is heavily reliant on models which explore the entailments of Formal Axiomatic Systems (FAS). The incompleteness results of Gödel, the incomputability results of Turing, and the Algorithmic Information Theory results of Chaitin, undermine a realist (platonic) truth model of emergent properties. These same findings support the hegemony of epistemology over ontology and point to alternative truth models such as intuitionism, constructivism and quasi-empiricism.
Resumo:
Recognition as a cue to judgment in a novel, multi-option domain (the Sunday Times Rich List) is explored. As in previous studies, participants were found to make use of name recognition as a cue to the presumed wealth of individuals. Names that were recognized were judged to be the richest name from amongst the set presented at above chance levels. This effect persisted across situations in which more than one name was recognized; recognition was used as an inclusion criterion for the sub-set of names to be considered the richest of the set presented. However, when the question was reversed, and a “poorest” judgment was required, use of recognition as an exclusion criterion was observed only when a single name was recognized. Reaction times when making these judgments also show a distinction between “richest” and “poorest” questions with recognition of none of the options taking the longest time to judge in the “richest” question condition and full recognition of all the names presented taking longest to judge in the “poorest” question condition. Implications for decision-making using simple heuristics are discussed.
Resumo:
An approach to the automatic generation of efficient Field Programmable Gate Arrays (FPGAs) circuits for the Regular Expression-based (RegEx) Pattern Matching problems is presented. Using a novel design strategy, as proposed, circuits that are highly area-and-time-efficient can be automatically generated for arbitrary sets of regular expressions. This makes the technique suitable for applications that must handle very large sets of patterns at high speed, such as in the network security and intrusion detection application domains. We have combined several existing techniques to optimise our solution for such domains and proposed the way the whole process of dynamic generation of FPGAs for RegEX pattern matching could be automated efficiently.
Resumo:
We have discovered a novel approach of intrusion detection system using an intelligent data classifier based on a self organizing map (SOM). We have surveyed all other unsupervised intrusion detection methods, different alternative SOM based techniques and KDD winner IDS methods. This paper provides a robust designed and implemented intelligent data classifier technique based on a single large size (30x30) self organizing map (SOM) having the capability to detect all types of attacks given in the DARPA Archive 1999 the lowest false positive rate being 0.04 % and higher detection rate being 99.73% tested using full KDD data sets and 89.54% comparable detection rate and 0.18% lowest false positive rate tested using corrected data sets.
Resumo:
In the past decade, airborne based LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sectors as a reliable and accurate source for land surveying in environmental, engineering and civil applications. Commonly, the first task to investigate LIDAR point clouds is to separate ground and object points. Skewness Balancing has been proven to be an efficient non-parametric unsupervised classification algorithm to address this challenge. Initially developed for moderate terrain, this algorithm needs to be adapted to handle sloped terrain. This paper addresses the difficulty of object and ground point separation in LIDAR data in hilly terrain. A case study on a diverse LIDAR data set in terms of data provider, resolution and LIDAR echo has been carried out. Several sites in urban and rural areas with man-made structure and vegetation in moderate and hilly terrain have been investigated and three categories have been identified. A deeper investigation on an urban scene with a river bank has been selected to extend the existing algorithm. The results show that an iterative use of Skewness Balancing is suitable for sloped terrain.
Resumo:
A novel memory-based embodied cognitive architecture is introduced – the MBC architecture. It is founded upon neuropsychological theory, and may be applied to investigating the interplay of embodiment, autonomy, and environmental interaction as related to the development of cognition.