725 resultados para workplace-based learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are significant levels of concern about the relevance and the difficulty of learning some issues on Strength of Materials and Structural Analysis. Most students of Continuum Mechanics and Structural Analysis in Civil Engineering usually point out some key learning aspects as especially difficult for acquiring specific skills. These key concepts entail comprehension difficulties but ease access and applicability to structural analysis in more advanced subjects. Likewise, some elusive but basic structural concepts, such as flexibility, stiffness or influence lines, are paramount for developing further skills required for advanced structural design: tall buildings, arch-type structures as well as bridges. As new curricular itineraries are currently being implemented, it appears appropriate to devise a repository of interactive web-based applications for training in those basic concepts. That will hopefully train the student to understand the complexity of such concepts, to develop intuitive knowledge on actual structural response and to improve their preparation for exams. In this work, a web-based learning assistant system for influence lines on continuous beams is presented. It consists of a collection of interactive user-friendly applications accessible via Web. It is performed in both Spanish and English languages. Rather than a “black box” system, the procedure involves open interaction with the student, who can simulate and virtually envisage the structural response. Thus, the student is enabled to set the geometric, topologic and mechanic layout of a continuous beam and to change or shift the loading and the support conditions. Simultaneously, the changes in the beam response prompt on the screen, so that the effects of the several issues involved in structural analysis become apparent. The system is performed through a set of web pages which encompasses interactive exercises and problems, written in JavaScript under JQuery and DyGraphs frameworks, given that their efficiency and graphic capabilities are renowned. Students can freely boost their self-study on this subject in order to face their exams more confidently. Besides, this collection is expected to be added to the "Virtual Lab of Continuum Mechanics" of the UPM, launched in 2013 (http://serviciosgate.upm.es/laboratoriosvirtuales/laboratorios/medios-continuos-en-construcci%C3%B3n)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quizzes are among the most widely used resources in web-based education due to their many benefits. However, educators need suitable authoring tools that can be used to create reusable quizzes and to enhance existing materials with them. On the other hand, if teachers use Audience Response Systems (ARSs) they can get instant feedback from their students and thereby enhance their instruction. This paper presents an online authoring tool for creating reusable quizzes and enhancing existing learning resources with them, and a web-based ARS that enables teachers to launch the created quizzes and get instant feedback from the class. Both the authoring tool and the ARS were evaluated. The evaluation of the authoring tool showed that educators can effectively enhance existing learning resources in an easy way by creating and adding quizzes using that tool. Besides, the different factors that assure the reusability of the created quizzes are also exposed. Finally, the evaluation of the developed ARS showed an excellent acceptance of the system by teachers and students, and also it indicated that teachers found the system easy to set up and use in their classrooms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El aprendizaje basado en problemas se lleva aplicando con éxito durante las últimas tres décadas en un amplio rango de entornos de aprendizaje. Este enfoque educacional consiste en proponer problemas a los estudiantes de forma que puedan aprender sobre un dominio particular mediante el desarrollo de soluciones a dichos problemas. Si esto se aplica al modelado de conocimiento, y en particular al basado en Razonamiento Cualitativo, las soluciones a los problemas pasan a ser modelos que representan el compotamiento del sistema dinámico propuesto. Por lo tanto, la tarea del estudiante en este caso es acercar su modelo inicial (su primer intento de representar el sistema) a los modelos objetivo que proporcionan soluciones al problema, a la vez que adquieren conocimiento sobre el dominio durante el proceso. En esta tesis proponemos KaiSem, un método que usa tecnologías y recursos semánticos para guiar a los estudiantes durante el proceso de modelado, ayudándoles a adquirir tanto conocimiento como sea posible sin la directa supervisión de un profesor. Dado que tanto estudiantes como profesores crean sus modelos de forma independiente, estos tendrán diferentes terminologías y estructuras, dando lugar a un conjunto de modelos altamente heterogéneo. Para lidiar con tal heterogeneidad, proporcionamos una técnica de anclaje semántico para determinar, de forma automática, enlaces entre la terminología libre usada por los estudiantes y algunos vocabularios disponibles en la Web de Datos, facilitando con ello la interoperabilidad y posterior alineación de modelos. Por último, proporcionamos una técnica de feedback semántico para comparar los modelos ya alineados y generar feedback basado en las posibles discrepancias entre ellos. Este feedback es comunicado en forma de sugerencias individualizadas que el estudiante puede utilizar para acercar su modelo a los modelos objetivos en cuanto a su terminología y estructura se refiere. ABSTRACT Problem-based learning has been successfully applied over the last three decades to a diverse range of learning environments. This educational approach consists of posing problems to learners, so they can learn about a particular domain by developing solutions to them. When applied to conceptual modeling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behavior of a dynamic system. Therefore, the learner's task is to move from their initial model, as their first attempt to represent the system, to the target models that provide solutions to that problem while acquiring domain knowledge in the process. In this thesis we propose KaiSem, a method for using semantic technologies and resources to scaffold the modeling process, helping the learners to acquire as much domain knowledge as possible without direct supervision from the teacher. Since learners and experts create their models independently, these will have different terminologies and structure, giving rise to a pool of models highly heterogeneous. To deal with such heterogeneity, we provide a semantic grounding technique to automatically determine links between the unrestricted terminology used by learners and some online vocabularies of the Web of Data, thus facilitating the interoperability and later alignment of the models. Lastly, we provide a semantic-based feedback technique to compare the aligned models and generate feedback based on the possible discrepancies. This feedback is communicated in the form of individualized suggestions, which can be used by the learner to bring their model closer in terminology and structure to the target models.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introdução: Entre as estratégias de ensino e aprendizagem utilizadas nas práticas pedagógicas, a Problem Based Learning (PBL) (Aprendizagem Baseada em Problemas) é utilizada desde 1960, em especial nos cursos de Medicina. Mesmo sendo uma estratégia valiosa, um dos seus obstáculos é a pouca prática dos alunos em atividades autodirigidas, pesquisa e construção coletiva do conhecimento. Objetivo: Rastrear elementos constitutivos da PBL através de dados colhidos em artigos pesquisados em sítios de divulgação científica; Avaliar, nos estudos selecionados, os aspectos positivos e negativos que estejam relacionados com a metodologia do Sistema PBL aplicada ao ensino médico no Brasil. Metodologia: Estudo bibliográfico de 13 textos utilizando um modelo de desconstrução, denominada Análise Textual Discursiva (ATD) que consiste em: transformação dos artigos em pedaços menores; análise textual; identificação de padrões convergentes e divergentes em relação a PBL; organização e síntese dos dados, culminando com a elaboração de estratégia adaptativa da PBL para o curso de Medicina. Resultados: Foram encontradas 116 citações que convergiam para referências positivos acerca da metodologia PBL e 40 citações que divergiam acerca dos pontos positivos. Os aspectos positivos como o desenvolvimento de atitudes e habilidades; desenvolvimento de competências anteriores ao curso; efeitos positivos depois de terminada a graduação, como autonomia de estudo e a articulação entre currículo e realidade profissional, representam pontos a serem reforçados na aula. Em contraponto, foi observado que dentre os negativos a não compreensão do papel do professor como tutor; necessidade de conteúdo formal tradicional pelos alunos e a expectativa que o professor retire as suas dúvidas são pontos a serem evitados. Conclusões: A metodologia PBL deverá servir como metodologia ativa para aproveitar ao máximo as habilidades que os alunos já apresentam, potencializando o aprendizado na educação médica em sala de aula. Palavras-Chave: PBL; curso de medicina; metodologia ativa; educação médica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control Engineering is an essential part of university electrical engineering education. Normally, a control course requires considerable mathematical as well as engineering knowledge and is consequently regarded as a difficult course by many undergraduate students. From the academic point of view, how to help the students to improve their learning of the control engineering knowledge is therefore an important task which requires careful planning and innovative teaching methods. Traditionally, the didactic teaching approach has been used to teach the students the concepts needed to solve control problems. This approach is commonly adopted in many mathematics intensive courses; however it generally lacks reflection from the students to improve their learning. This paper addresses the practice of action learning and context-based learning models in teaching university control courses. This context-based approach has been practised in teaching several control engineering courses in a university with promising results, particularly in view of student learning performances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batchmode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995-1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n = 692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD < 1 day (Prop(MAD < 1)). The significance of the comparison is assessed through a regression analysis. Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD = 1.77 days and Prop(MAD < 1) = 54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p-value = 0.063) and a significant (p-value = 0.044) increase of Prop(MAD

Relevância:

100.00% 100.00%

Publicador: