964 resultados para wireless fading channels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter investigates the ergodic capacity of MIMO Nakagami-m fading channels with both uniformly and non-uniformly distributed phases. We first obtain a tight capacity upper bound for the channel and then derive exact expressions for the low signal-to-noise ratio (SNR) capacity metrics, based on which we examine the impact of fading parameter m on the capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the impact of transmit antenna selection with receive generalized selection combining (TAS/GSC) for cognitive decode-and-forward (DF) relaying in Nakagami-m fading channels. We select a single transmit antenna at the secondary transmitter which maximizes the receive signal-to-noise ratio (SNR) and combine a subset of receive antennas with the largest SNRs at the secondary receiver. In an effort to assess the performance, we first derive the probability density function and cumulative distribution function of the end-to-end SNR using the moment generating function. We then derive new exact closed-form expression for the ergodic capacity. More importantly, by deriving the asymptotic expression for the high SNR approximation of the ergodic capacity, we gather deep insights into the high SNR slope and the power offset. Our results show that the high SNR slope is 1/2 under the proportional interference power constraint. Under the fixed interference power constraint, the high SNR slope is zero.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the physical layer secrecy performance of a single-input single-output system that consists of single antenna devices and operates in the presence of a single antenna passive eavesdropper over dissimilar fading channels. In particular, we consider two scenarios in terms of dissimilar fading channel arrangements: the legal/illegal channels are subject to Rayleigh/Rician fading, respectively; and the legal/illegal channels are subject to Rician/Rayleigh fading, respectively. Specifically, analytical expressions for the probability of the existence of a non-zero secrecy capacity and the secrecy outage probability are derived by using statistical characteristics of the signal-to-noise ratio. Numerical results are provided for selected scenarios to illustrate applications of the developed analytical expressions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a thorough performance analysis of dual-hop cognitive amplify-and-forward (AF) relaying networks under spectrum-sharing mechanism over independent non-identically distributed (i.n.i.d.) 􀀀 fading channels. In order to guarantee the quality-of-service (QoS) of primary networks, both maximum tolerable peak interference power Q at the primary users (PUs) and maximum allowable transmit power P at secondary users (SUs) are considered to constrain transmit power at the cognitive transmitters. For integer-valued fading parameters, a closed-form lower bound for the outage probability (OP) of the considered networks is obtained. Moreover, assuming arbitrary-valued fading parameters, the lower bound in integral form for the OP is derived. In order to obtain further insights on the OP performance, asymptotic expressions for the OP at high SNRs are derived, from which the diversity/coding gains and the diversity-multiplexing gain tradeoff (DMT) of the secondary network can be readily deduced. It is shown that the diversity gain and also the DMT are solely determined by the fading parameters of the secondary network whereas the primary network only affects the coding gain. The derived results include several others available in previously published works as special cases, such as those for Nakagami-m fading channels. In addition, performance evaluation results have been obtained by Monte Carlo computer simulations which have verified the accuracy of the theoretical analysis.