998 resultados para winter common bean
Resumo:
Aluminium (Al) toxicity and drought are two major factors limiting common bean (Phaseolus vulgaris) production in the tropics. Short-term effects of Al toxicity and drought stress on root growth in acid, Al-toxic soil were studied, with special emphasis on Al-drought interaction in the root apex. Root elongation was inhibited by both Al and drought. Combined stresses resulted in a more severe inhibition of root elongation than either stress alone. This result was different from the alleviation of Al toxicity by osmotic stress (-0.60 MPa polyethylene glycol) in hydroponics. However, drought reduced the impact of Al on the root tip, as indicated by the reduction of Al-induced callose formation and MATE expression. Combined Al and drought stress enhanced up-regulation of ACCO expression and synthesis of zeatin riboside, reduced drought-enhanced abscisic acid (ABA) concentration, and expression of NCED involved in ABA biosynthesis and the transcription factors bZIP and MYB, thus affecting the regulation of ABA-dependent genes (SUS, PvLEA18, KS-DHN, and LTP) in root tips. The results provide circumstantial evidence that in soil, drought alleviates Al injury, but Al renders the root apex more drought-sensitive, particularly by impacting the gene regulatory network involved in ABA signal transduction and cross-talk with other phytohormones necessary for maintaining root growth under drought.
Resumo:
Aluminium (Al) toxicity and drought are the two major abiotic stress factors limiting common bean production in the tropics. Using hydroponics, the short-term effects of combined Al toxicity and drought stress on root growth and Al uptake into the root apex were investigated. In the presence of Al stress, PEG 6000 (polyethylene glycol)-induced osmotic (drought) stress led to the amelioration of Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1. PEG 6000 (>> PEG 1000) treatment greatly decreased Al accumulation in the 1 cm root apices even when the roots were physically separated from the PEG solution using dialysis membrane tubes. Upon removal of PEG from the treatment solution, the root tips recovered from osmotic stress and the Al accumulation capacity was quickly restored. The PEG-induced reduction of Al accumulation was not due to a lower phytotoxic Al concentration in the treatment solution, reduced negativity of the root apoplast, or to enhanced citrate exudation. Also cell-wall (CW) material isolated from PEG-treated roots showed a low Al-binding capacity which, however, was restored after destroying the physical structure of the CW. The comparison of the Al(3+), La(3+), Sr(2+), and Rb(+) binding capacity of the intact root tips and the isolated CW revealed the specificity of the PEG 6000 effect for Al. This could be due to the higher hydrated ionic radius of Al(3+) compared with other cations (Al(3+) >> La(3+) > Sr(2+) > Rb(+)). In conclusion, the results provide circumstantial evidence that the osmotic stress-inhibited Al accumulation in root apices and thus reduced Al-induced inhibition of root elongation in the Al-sensitive genotype VAX 1 is related to the alteration of CW porosity resulting from PEG 6000-induced dehydration of the root apoplast.
Resumo:
The physical, chemical and pasting properties of the flour and isolated starches from six different bean cultivars (Phaseolus vulgaris L.) were investigated in order to obtain information for application in new products. The protein and total starch contents of the bean flours ranged from 17.72 to 20.27% and from 39.68 to 43.78%, respectively. The bean starches had low amounts of proteins, lipids and ash and showed an amylose content ranging between 45.32 and 51.11% and absolute density values between 1.55 and 1.78 g.cm?3. The bean starch granules were round to oval with a smooth surface. Results viscoamylographic profiles of the starches and flours showed the possibility of selecting cultivars for specific applications according to these characteristics.
Resumo:
Based on the evidences presented in this paper, results from classical genetic studies, fine-mapping information and physical position analysis using the reference genome sequence of P. vulgaris, the BIC Genetic Committee has formally accepted the proposed new gene symbols.
Resumo:
The objective of this study was to identify common bean cultivars with resistance to Fusarium wilt.
Resumo:
This study aimed to perform phenotypic and molecular characterization of cultivars and breeding lines of common bean for resistance to anthracnose.
Resumo:
The objectives of this study were to investigate the genetic variability and select elite lines for CT, since these lines aggregate essential agronomic traits.
Resumo:
The aim of this study was progeny tests in segregating populations for resistance genes to these three diseases.
Resumo:
The present work aimed to characterize lines produced by the Breeding Program of Common Bean (PMGF) of the Federal University of Viçosa (UFV), called ?Ruda R3? and ?Pérola R1?, in reaction to different races of P. griseola.
Resumo:
The establishment of a specific Marker-Assisted Selection Facility at the Embrapa Rice and Beans Biotechnology Laboratory, in 2014, has better supported the routine analysis with molecular markers demanded by the Embrapa Common Bean Breeding Program. In addition, it has also supported other Embrapa plant breeding programs, such as rice and cotton.
Resumo:
This study aimed to select special grain bean lines with high productivity, adaptability and stability of production, evaluated in different environments of the Minas Gerais State, Brazil.
Resumo:
The aim of this study was to identify sources of resistance in the germplasm collection providing information of potential sources of resistance to introduce in breeding programs.
Resumo:
This study aimed to compare the reaction of common bean lines to Pseudocercospora griseola in different enviromental conditions.
Resumo:
Common bean (Phaseolus vulgaris L.) is a leguminous in high demand for human nutrition and a very important agricultural product. Production of common bean is constrained by environmental stresses such as drought. Although conventional plant selection has been used to increase production yield and stress tolerance, drought tolerance selection based on phenotype is complicated by associated physiological, anatomical, cellular, biochemical, and molecular changes. These changes are modulated by differential gene expression. A common method to identify genes associated with phenotypes of interest is the characterization of Single Nucleotide Polymorphims (SNPs) to link them to specific functions. In this work, we selected two drought-tolerant parental lines from Mesoamerica, Pinto Villa, and Pinto Saltillo. The parental lines were used to generate a population of 282 families (F3:5) and characterized by 169 SNPs. We associated the segregation of the molecular markers in our population with phenotypes including flowering time, physiological maturity, reproductive period, plant, seed and total biomass, reuse index, seed yield, weight of 100 seeds, and harvest index in three cultivation cycles. We observed 83 SNPs with significant association (p < 0.0003 after Bonferroni correction) with our quantified phenotypes. Phenotypes most associated were days to flowering and seed biomass with 58 and 44 associated SNPs, respectively. Thirty-seven out of the 83 SNPs were annotated to a gene with a potential function related to drought tolerance or relevant molecular/biochemical functions. Some SNPs such as SNP28 and SNP128 are related to starch biosynthesis, a common osmotic protector; and SNP18 is related to proline biosynthesis, another well-known osmotic protector.
Resumo:
The common bean cultivar with carioca grain type, BRSMG Uai, is recommended for cultivation in Minas Gerais and stands out for its upright plant architecture, which facilitates cultivation and mechanical harvesting. This cultivar has high yield potential and is resistant to the major races of anthracnose that occur in region.