915 resultados para wind energy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a novel concept of Energy Storage System (ESS) interfacing with the grid side inverter in wind energy conversion systems. The inverter system used here is formed by cascading a 2-level inverter and a three level inverter through a coupling transformer. The constituent inverters are named as the “main inverter” and the “auxiliary inverter” respectively. The main inverter is connected with the rectified output of the wind generator while the auxiliary inverter is attached to a Battery Energy Storage System (BESS). The BESS ensures constant power dispatch to the grid irrespective of change in wind condition. Furthermore, this unique combination of BESS and inverter eliminates the need of additional dc-dc converters. Novel modulation and control techniques are proposed to address the problem of non-integer, dynamically-changing dc-link voltage ratio, which is due to random wind changes. Strategies used to handle auxiliary inverter dc-link voltage imbalances and controllers used to charge batteries at different rates are explained in detail. Simulation results are presented to verify the efficacy of the proposed modulation and control techniques in suppressing random wind power fluctuations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Battery energy storage system (BESS) is to be incorporated in a wind farm to achieve constant power dispatch. The design of the BESS is based on the forecasted wind speed, and the technique assumes the distribution of the error between the forecasted and actual wind speeds is Gaussian. It is then shown that although the error between the predicted and actual wind powers can be evaluated, it is non-Gaussian. With the known distribution in the error of the predicted wind power, the capacity of the BESS can be determined in terms of the confident level in meeting specified constant power dispatch commitment. Furthermore, a short-term power dispatch strategy is also developed which takes into account the state of charge (SOC) of the BESS. The proposed approach is useful in the planning of the wind farm-BESS scheme and in the operational planning of the wind power generating station.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Displacement of conventional synchronous generators by non-inertial units such as wind or solar generators will result in reduced-system inertia affecting under-frequency response. Frequency control is important to avoid equipment damage, load shedding, and possible blackouts. Wind generators along with energy storage systems can be used to improve the frequency response of low-inertia power system. This paper proposes a fuzzy-logic based frequency controller (FFC) for wind farms augmented with energy storage systems (wind-storage system) to improve the primary frequency response in future low-inertia hybrid power system. The proposed controller provides bidirectional real power injection using system frequency deviations and rate of change of frequency (RoCoF). Moreover, FFC ensures optimal use of energy from wind farms and storage units by eliminating the inflexible de-loading of wind energy and minimizing the required storage capacity. The efficacy of the proposed FFC is verified on the low-inertia hybrid power system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The control of a wind turbine to the mean wind speed in a gusty wind results in very poor performance. Fluctuations in wind speed with time constants shorter than the response time of a wind turbine results in operation away from optimum design conditions. The effectiveness of a turbine operating in a gusty wind is shown though the use of an unsteady performance coefficient, C e. This performance coefficient is similar in form to a power coefficient. However in order to accommodate unsteady effects, Ce is defined as a ratio of energy extracted to the total wind energy available over a set time period. The turbine's response to real wind data is modelled, in the first instance, by assuming a constant rotational speed operation. It is shown that a significant increase in energy production can be realized by demanding a Tip Speed Ratio above the steady state optimum. The constant speed model is then further extended to incorporate inertial and controller effects. Parameters dictating how well a turbine can track a demand in Tip Speed Ratio have been identified and combined, to form a non-dimensional turbine response parameter. This parameter characterizes a turbine's ability to track a demand in Tip Speed Ratio dependent on an effective gust frequency. A significant increase in energy output of 42% and 245% is illustrated through the application of this over-speed control. This is for the constant rotational speed and Tip Speed Ratio feedback models respectively. The affect of airfoil choice on energy extraction within a gusty wind has been considered. The adaptive control logic developed enables the application of airfoils demonstrating high maximum L/D values but sharp stalling characteristics to be successfully used in a VAWT design.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The European Union has set out an ambitious 20% target for renewable energy use by 2020. It is expected that this will be met mainly by wind energy. Looking towards 2050, reductions in greenhouse gas emissions of 80-95% are to be sought. Given the issues securing this target in the transport and agriculture sectors, it may only be possible to achieve this target if the power sector is carbon neutral well in advance of 2050. This has permitted the vast expansion of offshore renewables, wind, wave and tidal energy. Offshore wind has undergone rapid development in recent years however faces significant challenges up to 2020 to ensure commercial viability without the need for government subsidies. Wave energy is still in the very early stages of development so as yet there has been no commercial roll out. As both of these technologies are to face similar challenges in ensuring they are a viable alternative power generation method to fossil fuels, capitalising on the synergies is potentially a significant cost saving initiative. The advent of hybrid solutions in a variety of configurations is the subject of this thesis. A singular wind-wave energy platform embodies all the attributes of a hybrid system, including sharing space, transmission infrastructure, O&M activities and a platform/foundation. This configuration is the subject of this thesis, and it is found that an OWC Array platform with multi-MegaWatt wind turbines is a technically feasible, and potentially an economically feasible solution in the long term. Methods of design and analysis adopted in this thesis include numerical and physical modelling of power performance, structural analysis, fabrication cost modelling, simplified project economic modelling and time domain reliability modelling of a 210MW hybrid farm. The application of these design and analysis methods has resulted in a hybrid solution capable of producing energy at a cost between €0.22/kWh and €0.31/kWh depending on the source of funding for the project. Further optimisation through detailed design is expected to lower this further. This thesis develops new and existing methods of design and analysis of wind and wave energy devices. This streamlines the process of early stage development, while adhering to the widely adopted Concept Development Protocol, to develop a technically and economically feasible, combined wind-wave energy hybrid solution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta tese apresenta um estudo sobre otimização económica de parques eólicos, com o objetivo de obter um algoritmo para otimização económica de parques eólicos através do custo da energia produzida. No estudo utilizou-se uma abordagem multidisciplinar. Inicialmente, apresentam-se as principais tecnologias e diferentes arquiteturas utilizadas nos parques eólicos. Bem como esquemas de funcionamento e gestão dos parques. São identificadas variáveis necessárias e apresenta-se um modelo dimensionamento para cálculo dos custos da energia produzida, tendo-se dado ênfase às instalações onshore e ligados a rede elétrica de distribuição. É feita uma análise rigorosa das características das topologias dos aerogeradores disponíveis no mercado, e simula-se o funcionamento de um parque eólico para testar a validade dos modelos desenvolvidos. Também é implementado um algoritmo para a obtenção de uma resposta otimizada para o ciclo de vida económico do parque eólico em estudo. A abordagem proposta envolve algoritmos para otimização do custo de produção com multiplas funções objetivas com base na descrição matemática da produção de eletricidade. Foram desenvolvidos modelos de otimização linear, que estabelece a ligação entre o custo económico e a produção de eletricidade, tendo em conta ainda as emissões de CO2 em instrumentos de política energética para energia eólica. São propostas expressões para o cálculo do custo de energia com variáveis não convencionais, nomeadamente, para a produção variável do parque eólico, fator de funcionamento e coeficiente de eficiência geral do sistema. Para as duas últimas, também é analisado o impacto da distribuição do vento predominante no sistema de conversão de energia eólica. Verifica-se que os resultados obtidos pelos algoritmos propostos são similares às obtidas por demais métodos numéricos já publicados na comunidade científica, e que o algoritmo de otimização económica sofre influência significativa dos valores obtidos dos coeficientes em questão. Finalmente, é demonstrado que o algoritmo proposto (LCOEwso) é útil para o dimensionamento e cálculo dos custos de capital e O&M dos parques eólicos com informação incompleta ou em fase de projeto. Nesse sentido, o contributo desta tese vem ser desenvolver uma ferramenta de apoio à tomada de decisão de um gestor, investidor ou ainda agente público em fomentar a implantação de um parque eólico.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The calibration coefficients of several models of cup and propeller anemometers were analysed. The analysis was based on a series of laboratory calibrations between January 2003 and August 2007. Mean and standard deviation values of calibration coefficients from the anemometers studied were included. Two calibration procedures were used and compared. In the first, recommended by the Measuring network of Wind Energy Institutes (MEASNET), 13 measurement points were taken over a wind speed range of 4 to 16  m  s−1. In the second procedure, 9 measurement points were taken over a wider speed range of 4 to 23  m  s−1. Results indicated no significant differences between the two calibration procedures applied to the same anemometer in terms of measured wind speed and wind turbines' Annual Energy Production (AEP). The influence of the cup anemometers' design on the calibration coefficients was also analysed. The results revealed that the slope of the calibration curve, if based on the rotation frequency and not the anemometer's output frequency, seemed to depend on the cup center rotation radius.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Summary: Renewable energy is one of the main pillars of sustainable development, especially in developing economies. Increasing energy demand and the limitation of fossil fuel reserves make the use of renewable energy essential for sustainable development. Wind energy is considered to be one of the most important resources of renewable energy. In North African countries, such as Egypt, wind energy has an enormous potential; however, it faces quite a number of technical challenges related to the performance of wind turbines in the Saharan environment. Seasonal sand storms affect the performance of wind turbines in many ways, one of which is increasing the wind turbine aerodynamic resistance through the increase of blade surface roughness. The power loss because of blade surface deterioration is significant in wind turbines. The surface roughness of wind turbine blades deteriorates because of several environmental conditions such as ice or sand. This paper is the first review on the topic of surface roughness effects on the performance of horizontal-axis wind turbines. The review covers the numerical simulation and experimental studies as well as discussing the present research trends to develop a roadmap for better understanding and improvement of wind turbine performance in deleterious environments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on electricity price and wind power is considered through a set of scenarios. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated production of thermal and wind energy generation, having as a goal the maximization of profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the analysis of shaft voltage in different configurations of a doubly fed induction generator (DFIG) and an induction generator (IG) with a back-to-back inverter in wind turbine applications. Detailed high frequency model of the proposed systems have been developed based on existing capacitive couplings in IG & DFIG structures and common mode voltage sources. In this research work, several arrangements of DFIG based wind energy conversion systems (WES) are investigated in case of shaft voltage calculation and its mitigation techniques. Placements of an LC line filter in different locations and its effects on shaft voltage elimination are studied via Mathematical analysis and simulations. A pulse width modulation (PWM) technique and a back-to-back inverter with a bidirectional buck converter have been presented to eliminate the shaft voltage in a DFIG wind turbine.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Midwest Independent Transmission System Operator (MISO) has experienced significant amounts of wind power development within the last decade. The MISO footprint spans the majority of the upper Midwest region of the country, from the Dakotas to Indiana and as far east as Michigan. These areas have a rich wind energy resource. States in the MISO footprint have passed laws or set goals that require load serving entities to supply a portion of their load using renewable energy. In order to meet these requirements, significant investments are needed to build the transmission infrastructure necessary to deliver the power from these often remote wind energy resources to the load centers. This paper presents some of the transmission planning related work done at MISO which was largely influenced by current and future needs for increased wind power generation in the footprint. Specifically, topics covered are generator interconnection, long-term planning coordination, and cost-allocation for new transmission lines.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a capacitor-clamped three-level inverter-based supercapacitor direct integration scheme for wind energy conversion systems. The idea is to increase the capacitance of clamping capacitors with the use of supercapacitors and allow their voltage to vary within a defined range. Even though this unique approach eliminates the need of interfacing dc-dc converters for supercapacitors, the variable voltage operation brings about several challenges. The uneven distribution of space vectors is the major modulation challenge. A space vector modulation method is proposed in this paper to address this issue and to generate undistorted currents even in the presence of dynamic changes in supercapacitor voltages. A supercapacitor voltage equalization algorithm is also presented. Moreover, control strategies of the proposed system are discussed in detail. Simulation and experimental results are presented to verify the efficacy of the proposed system in suppressing short-term wind power fluctuations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, a wind energy conversion system interfaced to the grid using a dual inverter is proposed. One of the two inverters in the dual inverter is connected to the rectified output of the wind generator while the other is directly connected to a battery energy storage system (BESS). This approach eliminates the need for an additional dc-dc converter and thus reduces power losses, cost, and complexity. The main issue with this scheme is uncorrelated dynamic changes in dc-link voltages that results in unevenly distributed space vectors. A detailed analysis on the effects of these variations is presented in this paper. Furthermore, a modified modulation technique is proposed to produce undistorted currents even in the presence of unevenly distributed and dynamically changing space vectors. An analysis on the battery charging/discharging process and maximum power point tracking of the wind turbine generator is also presented. Simulation and experimental results are presented to verify the efficacy of the proposed modulation technique and battery charging/discharging process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The drive towards high efficiency wind energy conversion systems has resulted in almost all the modern wind turbines to operate in the variable speed mode which inevitably requires back-to-back power electronic converters to decouple generator dynamics from the grid. The aim of this paper is to present an analysis on suitable topologies for the generator-side converter (rectifier) of the back-to-back converter arrangement. Performance of the two most popular rectifier systems, namely, the passive diode bridge rectifier and the active six-switch two-level rectifier are taken as two extremes to evaluate other topologies presented in this paper. The other rectifier systems considered in this study include combinations of a diode bridge rectifier and electronic reactance(s), a combination of a rectifier and a dc-dc converter and a half controlled rectifier. Diode-clamped and capacitor-clamped three-level active rectifier topologies and their possible switch reductions are also discussed in relation to the requirements of modern high power wind energy conversion systems (WECSs). Simulation results are presented to support conclusion derived from this analysis.