784 resultados para web-based teaching
Resumo:
Natural history collections are an invaluable resource housing a wealth of knowledge with a long tradition of contributing to a wide range of fields such as taxonomy, quarantine, conservation and climate change. It is recognized however [Smith and Blagoderov 2012] that such physical collections are often heavily underutilized as a result of the practical issues of accessibility. The digitization of these collections is a step towards removing these access issues, but other hurdles must be addressed before we truly unlock the potential of this knowledge.
Resumo:
Encoding protein 3D structures into 1D string using short structural prototypes or structural alphabets opens a new front for structure comparison and analysis. Using the well-documented 16 motifs of Protein Blocks (PBs) as structural alphabet, we have developed a methodology to compare protein structures that are encoded as sequences of PBs by aligning them using dynamic programming which uses a substitution matrix for PBs. This methodology is implemented in the applications available in Protein Block Expert (PBE) server. PBE addresses common issues in the field of protein structure analysis such as comparison of proteins structures and identification of protein structures in structural databanks that resemble a given structure. PBE-T provides facility to transform any PDB file into sequences of PBs. PBE-ALIGNc performs comparison of two protein structures based on the alignment of their corresponding PB sequences. PBE-ALIGNm is a facility for mining SCOP database for similar structures based on the alignment of PBs. Besides, PBE provides an interface to a database (PBE-SAdb) of preprocessed PB sequences from SCOP culled at 95% and of all-against-all pairwise PB alignments at family and superfamily levels. PBE server is freely available at http://bioinformatics.univ-reunion.fr/ PBE/.
Resumo:
"Fifty-six teachers, from four European countries, were interviewed to ascertain their attitudes to and beliefs about the Collaborative Learning Environments (CLEs) which were designed under the Innovative Technologies for Collaborative Learning Project. Their responses were analysed using categories based on a model from cultural-historical activity theory [Engestrom, Y. (1987). Learning by expanding.- An activity-theoretical approach to developmental research. Helsinki: Orienta-Konsultit; Engestrom, Y., Engestrom, R., & Suntio, A. (2002). Can a school community learn to master its own future? An activity-theoretical study of expansive learning among middle school teachers. In G. Wells & G. Claxton (Eds.), Learning for life in the 21st century. Oxford: Blackwell Publishers]. The teachers were positive about CLEs and their possible role in initiating pedagogical innovation and enhancing personal professional development. This positive perception held across cultures and national boundaries. Teachers were aware of the fact that demanding planning was needed for successful implementations of CLEs. However, the specific strategies through which the teachers can guide students' inquiries in CLEs and the assessment of new competencies that may characterize student performance in the CLEs were poorly represented in the teachers' reflections on CLEs. The attitudes and beliefs of the teachers from separate countries had many similarities, but there were also some clear differences, which are discussed in the article. (c) 2005 Elsevier Ltd. All rights reserved."
Resumo:
PDB Goodies is a web-based graphical user interface (GUI) to manipulate the Protein Data Bank file containing the three-dimensional atomic coordinates of protein structures. The program also allows users to save the manipulated three-dimensional atomic coordinate file on their local client system. These fragments are used in various stages of structure elucidation and analysis. This software is incorporated with all the three-dimensional protein structures available in the Protein Data Bank, which presently holds approximately 18 000 structures. In addition, this program works on a three-dimensional atomic coordinate file (Protein Data Bank format) uploaded from the client machine. The program is written using CGI/PERL scripts and is platform independent. The program PDB Goodies can be accessed over the World Wide Web at http:// 144.16.71.11/pdbgoodies/.
Resumo:
Engineering education quality embraces the activities through which a technical institution satisfies itself that the quality of education it provides and standards it has set are appropriate and are being maintained. There is a need to develop a standardised approach to most aspects of quality assurance for engineering programmes which is sufficiently well defined to be accepted for all assessments.We have designed a Technical Educational Quality Assurance and Assessment (TEQ-AA) System, which makes use of the information on the web and analyzes the standards of the institution. With the standards as anchors for definition, the institution is clearer about its present in order to plan better for its future and enhancing the level of educational quality.The system has been tested and implemented on the technical educational Institutions in the Karnataka State which usually host their web pages for commercially advertising their technical education programs and their Institution objectives, policies, etc., for commercialization and for better reach-out to the students and faculty. This helps in assisting the students in selecting an institution for study and to assist in employment.
A web-based semantic information retrieval system to support decision-making in collaborative design
Resumo:
Purpose Encouraging office workers to 'sit less and move more' encompasses two public health priorities. However, there is little evidence on the effectiveness of workplace interventions for reducing sitting, even less about the longer term effects of such interventions and still less on dual-focused interventions. This study assessed the short and mid-term impacts of a workplace web-based intervention (Walk@WorkSpain, W@WS; 2010-11) on self-reported sitting time, step counts and physical risk factors (waist circumference, BMI, blood pressure) for chronic disease. Methods Employees at six Spanish university campuses (n=264; 42 +/- 10 years; 171 female) were randomly assigned by worksite and campus to an Intervention (used W@WS; n=129; 87 female) or a Comparison group (maintained normal behavior; n=135; 84 female). This phased, 19-week program aimed to decrease occupational sitting time through increased incidental movement and short walks. A linear mixed model assessed changes in outcome measures between the baseline, ramping (8 weeks), maintenance (11 weeks) and follow-up (two months) phases for Intervention versus Comparison groups. Results A significant 2 (group) x 2 (program phases) interaction was found for self-reported occupational sitting (F[3]=7.97, p=0.046), daily step counts (F[3]=15.68, p=0.0013) and waist circumference (F[3]=11.67, p=0.0086). The Intervention group decreased minutes of daily occupational sitting while also increasing step counts from baseline (446 +/- 126; 8,862 +/- 2,475) through ramping (+425 +/- 120; 9,345 +/- 2,435), maintenance (+422 +/- 123; 9,638 +/- 3,131) and follow-up (+414 +/- 129; 9,786 +/- 3,205). In the Comparison group, compared to baseline (404 +/- 106), sitting time remained unchanged through ramping and maintenance, but decreased at follow-up (-388 +/- 120), while step counts diminished across all phases. The Intervention group significantly reduced waist circumference by 2.1cms from baseline to follow-up while the Comparison group reduced waist circumference by 1.3cms over the same period. Conclusions W@WSis a feasible and effective evidence-based intervention that can be successfully deployed with sedentary employees to elicit sustained changes on "sitting less and moving more".
Resumo:
The primary objective of this project, “the Assessment of Existing Information on Atlantic Coastal Fish Habitat”, is to inform conservation planning for the Atlantic Coastal Fish Habitat Partnership (ACFHP). ACFHP is recognized as a Partnership by the National Fish Habitat Action Plan (NFHAP), whose overall mission is to protect, restore, and enhance the nation’s fish and aquatic communities through partnerships that foster fish habitat conservation. This project is a cooperative effort of NOAA/NOS Center for Coastal Monitoring and Assessment (CCMA) Biogeography Branch and ACFHP. The Assessment includes three components; 1. a representative bibliographic and assessment database, 2. a Geographical Information System (GIS) spatial framework, and 3. a summary document with description of methods, analyses of habitat assessment information, and recommendations for further work. The spatial bibliography was created by linking the bibliographic table developed in Microsoft Excel and exported to SQL Server, with the spatial framework developed in ArcGIS and exported to GoogleMaps. The bibliography is a comprehensive, searchable database of over 500 selected documents and data sources on Atlantic coastal fish species and habitats. Key information captured for each entry includes basic bibliographic data, spatial footprint (e.g. waterbody or watershed), species and habitats covered, and electronic availability. Information on habitat condition indicators, threats, and conservation recommendations are extracted from each entry and recorded in a separate linked table. The spatial framework is a functional digital map based on polygon layers of watersheds, estuarine and marine waterbodies derived from NOAA’s Coastal Assessment Framework, MMS/NOAA’s Multipurpose Marine Cadastre, and other sources, providing spatial reference for all of the documents cited in the bibliography. Together, the bibliography and assessment tables and their spatial framework provide a powerful tool to query and assess available information through a publicly available web interface. They were designed to support the development of priorities for ACFHP’s conservation efforts within a geographic area extending from Maine to Florida, and from coastal watersheds seaward to the edge of the continental shelf. The Atlantic Coastal Fish Habitat Partnership has made initial use of the Assessment of Existing Information. Though it has not yet applied the AEI in a systematic or structured manner, it expects to find further uses as the draft conservation strategic plan is refined, and as regional action plans are developed. It also provides a means to move beyond an “assessment of existing information” towards an “assessment of fish habitat”, and is being applied towards the National Fish Habitat Action Plan (NFHAP) 2010 Assessment. Beyond the scope of the current project, there may be application to broader initiatives such as Integrated Ecosystem Assessments (IEAs), Ecosystem Based Management (EBM), and Marine Spatial Planning (MSP).