954 resultados para wavelength conversion
Resumo:
We propose a new all-optical, all-fibre scheme for conversion of time-division multiplexed to wavelength-division multiplexed signals using cross-phase modulation with triangular pulses. Partial signal regeneration using this technique is also demonstrated.
Resumo:
We propose a new all-optical, all-fibre scheme for conversion of time-division multiplexed to wavelength-division multiplexed signals using cross-phase modulation with triangular pulses. Partial signal regeneration using this technique is also demonstrated.
Resumo:
A 42.6 Gbit/s all-optical non-retum-to-zero (NRZ) to return-to-zero (RZ) format converter using a single SOA followed by an asymmetrical Mach-Zehnder interferometer is presented. The format converter generates a correctly-coded RZ signal with a controllable duty-cycle. It has the advantages of flexible input N RZ wavelength, preserved input polarity, negative bit error rate power penalty and low switching pulse energy (15fJ).
Resumo:
A compact all-room-temperature CW 73-nm tunable laser source in the visible spectral region (574nm-647nm) has been demonstrated by frequency-doubling of a broadly-tunable InAs/GaAs quantum dot external-cavity diode laser in periodically-poled potassium titanyl phosphate waveguides with a maximum output power in excess of 12mW and a maximum conversion efficiency exceeding 10%. Three waveguides with different cross-sectional areas (4×4μm2, 3×5μm2 and 2x6μm2) were investigated. Introduction - Development of compact broadly tunable laser sources in the visible spectral region is currently very attractive area of research with applications ranging from photomedicine and biophotonics to confocal fluorescence microscopy and laser projection displays. In this respect, semiconductor lasers with their small size, high efficiency, reliability and low cost are very promising for realization of such sources by frequencydoubling of the infrared light in nonlinear crystal waveguides. Furthermore, the wide tunability offered by quantum-dot (QD) external-cavity diode lasers (ECDL), due to the temperature insensibility and broad gain bandwidth [1,2], is very promising for the development of tunable visible laser sources [3,4]. In this work we show a compact green-to-red tunable allroom-temperature CW laser source using a frequency-doubled InAs/GaAs QD-ECDL in periodically-poled potassium titanyl phosphate (PPKTP) crystal waveguides. This laser source generates frequency-doubled light over the 574nm-647nm wavelength range utilizing the significant difference in the effective refractive indices of high-order and low-order modes in multimode waveguides [3]. Experimental results - Experimental setup used in this work was similar to that described in [3] and consisted of a QD gain chip in the quasiLittrow configuration and a PPKTP waveguide. Coarse wavelength tuning of the QD-ECDL between 1140 nm and 1300 nm at 20°C was possible for pump current of 1.5 A. The laser output was coupled into the PPKTP waveguide using an AR-coated 40x aspheric lens (NA ~ 0.55). The PPKTP frequency-doubling crystal (not AR coated) used in our work was 18 mm in length and was periodically poled for SHG (with the poling period of ~ 11.574 11m). The crystal contained 3 different waveguides with cross-sectional areas of ~ 4x4 11m2, 3x5 11m2 and 2x6 11m2. Both the pump laser and the PPKTP crystal were operating at room temperature. The waveguides with cross-sectional areas of 4x411m2, 3x511m2 and 2x611m2 demonstrated the tunability in the wavelength ranges of 577nm - 647nm, 576nm -643nm and 574nm - 641nm, respectively, with a maximum output power of 12.04mW at 606 nm Conclusion - We demonstrated a compact all-room-temperature broadlytunable laser source operating in the visible spectral region between 574nm and 647nm. This laser source is based on second harmonic generation in PPKTP waveguides with different cross-sectional areas using an InAs/GaAs QD-ECDL References [I] E.U. Rafailov, M.A. Cataluna, and W. Sibbett, Nat. Phot. 1,395 (2007). [2] K.A. Fedorova, M.A. Cataluna, I. Krestnikov, D. Livshits, and E.U. Rafailov, Opt. Express 18(18), 19438-19443 (2010). [3] K.A. Fedorova, G.S. Sokolovskii, P.R. Battle, D.A. Livshits, and E.U. Rafailov, Laser Phys. Lett. 9, 790-795 (2012). [4] K.A. Fedorova,G.S. Sokolovskii, D.T. Nikitichev, P.R. Battle, I.L. Krestnikov, D.A. Livshits, and E.U. Rafailov, Opt. Lett. 38(15), 2835-2837 (2013) © 2014 IEEE.
Resumo:
We present a compact, all-room-temperature continuous-wave laser source in the visible spectral region between 574 and 647 nm by frequency doubling of a broadly tunable InAs/GaAs quantum-dot external-cavity diode laser in a periodically poled potassium titanyl phosphate crystal containing three waveguides with different cross-sectional areas (4 × 4, 3 × 5, and 2 μm × 6 μm). The influence of a waveguide's design on tunability, output power, and mode distribution of second-harmonic generated light, as well as possibilities to increase the conversion efficiency via an optimization of a waveguide's cross-sectional area, was systematically investigated. A maximum output power of 12.04 mW with a conversion efficiency of 10.29% at 605.6 nm was demonstrated in the wider waveguide with the cross-sectional area of 4 μm × 4 μm.
Resumo:
A novel multichannel carrier-suppressed return-to-zero (CSRZ) to non-return-to-zero (NRZ) format conversion scheme based on a single custom-designed fiber Bragg grating (FBG) with comb spectra is proposed. The spectral response of each channel is designed according to the algebraic difference between the CSRZ and NRZ spectra outlines. The tailored group delays are introduced to minimize the maximum refractive index modulation. Numerical results show that four-channel 200-GHz-spaced CSRZ signals at 40 Gbits/s can be converted into NRZ signals with high Q-factor and wide-range robustness. It is shown that our proposed FBG is robust to deviations of bandwidth and central wavelength detuning. Another important merit of this scheme is that the pattern effects are efficiently reduced owing to the well-designed spectra response.
Resumo:
Recent theoretical investigations have demonstrated that the stability of mode-locked solution of multiple frequency channels depends on the degree of inhomogeneity in gain saturation. In this paper, these results are generalized to determine conditions on each of the system parameters necessary for both the stability and existence of mode-locked pulse solutions for an arbitrary number of frequency channels. In particular, we find that the parameters governing saturable intensity discrimination and gain inhomogeneity in the laser cavity also determine the position of bifurcations of solution types. These bifurcations are completely characterized in terms of these parameters. In addition to influencing the stability of mode-locked solutions, we determine a balance between cubic gain and quintic loss, which is necessary for existence of solutions as well. Furthermore, we determine the critical degree of inhomogeneous gain broadening required to support pulses in multiple frequency channels. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
Extended spectrum β-lactamases or ESBLs, which are derived from non-ESBL precursors by point mutation of β-lactamase genes (bla), are spreading rapidly all over the world and have caused considerable problems in the treatment of infections caused by bacteria which harbour them. The mechanism of this resistance is not fully understood and a better understanding of these mechanisms might significantly impact on choosing proper diagnostic and treatment strategies. Previous work on SHV β-lactamase gene, blaSHV, has shown that only Klebsiella pneumoniae strains which contain plasmid-borne blaSHV are able to mutate to phenotypically ESBL-positive strains and there was also evidence of an increase in blaSHV copy number. Therefore, it was hypothesised that although specific point mutation is essential for acquisition of ESBL activity, it is not yet enough, and blaSHV copy number amplification is also essential for an ESBL-positive phenotype, with homologous recombination being the likely mechanism of blaSHV copy number expansion. In this study, we investigated the mutation rate of non-ESBL expressing K. pneumoniae isolates to an ESBL-positive status by using the MSS-maximum likelihood method. Our data showed that blaSHV mutation rate of a non-ESBL expressing isolate is lower than the mutation rate of the other single base changes on the chromosome, even with a plasmid-borne blaSHV gene. On the other hand, mutation rate from a low MIC ESBL-positive (≤ 8 µg/mL for cefotaxime) to high MIC ESBL-positive (≥16 µg/mL for cefotaxime) is very high. This is because only gene copy number increase is needed which is probably mediated by homologous recombination that typically takes place at a much higher frequencies than point mutations. Using a subinhibitory concentration of novobiocin, as a homologous recombination inhibitor, revealed that this is the case.
Resumo:
Grasslands are heavily relied upon for food and forage production. A key component for sustaining production in grassland ecosystems is the maintenance of soil organic matter (SOM), which can be strongly influenced by management. Many management techniques intended to increase forage production may potentially increase SOM, thus sequestering atmospheric carbon (C). Further, conversion from either cultivation or native vegetation into grassland could also sequester atmospheric carbon. We reviewed studies examining the influence of improved grassland management practices and conversion into grasslands on soil C worldwide to assess the potential for C sequestration. Results from 115 studies containing over 300 data points were analyzed. Management improvements included fertilization (39%), improved grazing management (24%), conversion from cultivation (15%) and native vegetation (15%), sowing of legumes (4%) and grasses (2%), earthworm introduction (1%), and irrigation (1%). Soil C content and concentration increased with improved management in 74% of the studies, and mean soil C increased with all types of improvement. Carbon sequestration rates were highest during the first 40 yr after treatments began and tended to be greatest in the top 10 cm of soil. Impacts were greater in woodland and grassland biomes than in forest, desert, rain forest, or shrubland biomes. Conversion from cultivation, the introduction of earthworms, and irrigation resulted in the largest increases. Rates of C sequestration by type of improvement ranged from 0.11 3.04 Mg C.ha(-1) yr(-1), with a mean of 0.54 Mg C.ha(-1).yr(-1) and were highly influenced by biome type and climate. We conclude that grasslands can act as a significant carbon sink with the implementation of improved management.
Resumo:
Biomass represents an abundant and relatively low cost carbon resource that can be utilized to produce platform chemicals such as levulinic acid. Current processing technology limits the cost-effective production of levulinic acid in commercial quantities from biomass. The key to improving the yield and effi ciency of levulinic acid production from biomass lies in the ability to optimize and isolate the intermediate products at each step of the reaction pathway and reduce re-polymerization and side reactions. New technologies (including the use of microwave irradiation and ionic liquids) and the development of highly selective catalysts would provide the necessary step change for the optimization of key reactions. A processing environment that allows the use of biphasic systems and/or continuous extraction of products would increase reaction rates, yields and product quality. This review outlines the chemistry of levulinic acid synthesis and discusses current and potential technologies for producing levulinic acid from lignocellulosics.