989 resultados para wave spectra
Resumo:
This report presents an analysis of the data from the first wave of the Longitudinal Study of Australian Children (LSAC) to explore the wellbeing of 5,107 children in the infant cohort of the study and the 4,983 children, aged 4 to 5 years, in the child cohort. Wave 1 of LSAC includes measures of multiple aspects of children’s early development. These developmental measures are summarised in the LSAC Outcome Index, a composite measure which includes an overall index as well as three separate domain scores, tapping physical development, social and emotional functioning, and learning and cognitive development.
Resumo:
Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart, by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computer-based intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are nonlinear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of nonlinear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and seven classes of arrhythmia. We present some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. We also extracted features from the HOS and performed an analysis of variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test.
Resumo:
In 1967 Brisbane Repertory Theatre made a decision that was to change the city's cultural landscape in a significant and lasting way. Faced with crippling theatre rental costs, Brisbane Rep. found a realistic solution by converting one of its properties - an old Queenslander - into a unique theatre space. The theatre-in-the box that emerged, aptly called La Boite, opened on 23 June 1967 with a production of John Osborne's Look Back in Anger. This experimental space excited the imagination of a new, younger audience not previously interested in Brisbane Rep's essentially conservative fare. It attracted a new group of directors and actors keen to be part of a changing repertoire that embraced more radical, non-mainstream productions, some of which were of Australian plays. The decade after 1967 was a period of change and development unprecedented in La Boite's history. Since then the company has sustained and grown its commitment to Australian plays and the commissioning of new works. To what extent was this most significance moment in La Boite's transformational journey influenced by southern 'new waves' of change? With the benefit of hindsight, it is now time for a re-consideration of Brisbane's distinctive contribution to the New Wave.
Resumo:
Adiabatic compression testing of components in gaseous oxygen is a test method that is utilized worldwide and is commonly required to qualify a component for ignition tolerance under its intended service. This testing is required by many industry standards organizations and government agencies. This paper traces the background of adiabatic compression testing in the oxygen community and discusses the thermodynamic and fluid dynamic processes that occur during rapid pressure surges. This paper is the first of several papers by the authors on the subject of adiabatic compression testing and is presented as a non-comprehensive background and introduction.
Resumo:
Near-infrared (NIR) and Fourier transform infrared (FTIR) spectroscopy have been used to determine the mineralogical character of isomorphic substitutions for Mg2+ by divalent transition metals Fe, Mn, Co and Ni in natural halotrichite series. The minerals are characterised by d-d transitions in NIR region 12000-7500 cm-1. NIR spectrum of halotrichite reveals broad feature from 12000 to 7500 cm-1 with a splitting of two bands resulting from ferrous ion transition 5T2g ® 5Eg. The presence of overtones of OH- fundamentals near 7000 cm-1 confirms molecular water in the mineral structure of the halotrichite series. The appearance of the most intense peak at around 5132 cm-1 is a common feature in the three minerals and is derived from combination of OH- vibrations of water molecules and 2 water bending modes. The influence of cations like Mg2+, Fe2+, Mn2+, Co2+, Ni2+ shows on the spectra of halotrichites. Especially wupatkiite-OH stretching vibrations in which bands are distorted conspicuously to low wave numbers at 3270, 2904 and 2454 cm-1. The observation of high frequency 2 mode in the infrared spectrum at 1640 cm-1 indicates coordination of water molecules is strongly hydrogen bonded in natural halotrichites. The splittings of bands in 3 and 4 (SO4)2- stretching regions may be attributed to the reduction of symmetry from Td to C2v for sulphate ion. This work has shown the usefulness of NIR spectroscopy for the rapid identification and classification of the halotrichite minerals.
Identification of acoustic emission wave modes for accurate source location in plate-like structures
Resumo:
Acoustic emission (AE) technique is a popular tool used for structural health monitoring of civil, mechanical and aerospace structures. It is a non-destructive method based on rapid release of energy within a material by crack initiation or growth in the form of stress waves. Recording of these waves by means of sensors and subsequent analysis of the recorded signals convey information about the nature of the source. Ability to locate the source of stress waves is an important advantage of AE technique; but as AE waves travel in various modes and may undergo mode conversions, understanding of the modes (‘modal analysis’) is often necessary in order to determine source location accurately. This paper presents results of experiments aimed at finding locations of artificial AE sources on a thin plate and identifying wave modes in the recorded signal waveforms. Different source locating techniques will be investigated and importance of wave mode identification will be explored.
Resumo:
The SER spectra of riboflavin and FAD are identical and are resonance enhanced at 514 or 532 nm. Signals from FAD/ riboflavin dominated SER spectra whenever these compounds were present with proteins or bacteria. SER spectra of very different bacteria such as Pseudomonas. aeruginosa, Bacillu. subtilis and Geobacillus. stearothermophilus were dominated by signals from FAD, even when these bacteria were added to a preformed colloid. The SERS signal of FAD is greatly reduced at 785 nm, and SER spectra of bacteria excited at 785 nm are quite different than those collected at 514 or 532 nm. This supports the assignment of the peaks in the 514 nm SER spectra of bacteria to FAD rather to amino acids or N-acetylglucosamine. The SER spectra of certain mixes of adenine and FAD showed similar changes to those of bacteria when the excitation was changed from 514/532 nm to 785 nm. The ratio of colloid: bacteria was of critical important for obtaining good SER spectra, and the addition of sodium sulfate was also beneficial. Removal of EPS from bacteria before analysis facilitated interaction with the silver surface, and may be a useful step to include in identification protocols.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.
Resumo:
Free surface flow past a two-dimensional semi-infinite curved plate is considered, with emphasis given to solving for the shape of the resulting wave train that appears downstream on the surface of the fluid. This flow configuration can be interpreted as applying near the stern of a wide blunt ship. For steady flow in a fluid of finite depth, we apply the Wiener-Hopf technique to solve a linearised problem, valid for small perturbations of the uniform stream. Weakly nonlinear results found using a forced KdV equation are also presented, as are numerical solutions to the fully nonlinear problem, computed using a conformal mapping and a boundary integral technique. By considering different families of shapes for the semi-infinite plate, it is shown how the amplitude of the waves can be minimised. For plates that increase in height as a function of the direction of flow, reach a local maximum, and then point slightly downwards at the point at which the free surface detaches, it appears the downstream wavetrain can be eliminated entirely.