972 resultados para water characteristics


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studies of carbon isotopes and cadmium in bottom-dwelling foraminifera from ocean sediment cores have advanced our knowledge of ocean chemical distributions during the late Pleistocene. Last Glacial Maximum data are consistent with a persistent high-ΣCO2 state for eastern Pacific deep water. Both tracers indicate that the mid-depth North and tropical Atlantic Ocean almost always has lower ΣCO2 levels than those in the Pacific. Upper waters of the Last Glacial Maximum Atlantic are more ΣCO2-depleted and deep waters are ΣCO2-enriched compared with the waters of the present. In the northern Indian Ocean, δ13C and Cd data are consistent with upper water ΣCO2 depletion relative to the present. There is no evident proximate source of this ΣCO2-depleted water, so I suggest that ΣCO2-depleted North Atlantic intermediate/deep water turns northward around the southern tip of Africa and moves toward the equator as a western boundary current. At long periods (>15,000 years), Milankovitch cycle variability is evident in paleochemical time series. But rapid millennial-scale variability can be seen in cores from high accumulation rate series. Atlantic deep water chemical properties are seen to change in as little as a few hundred years or less. An extraordinary new 52.7-m-long core from the Bermuda Rise contains a faithful record of climate variability with century-scale resolution. Sediment composition can be linked in detail with the isotope stage 3 interstadials recorded in Greenland ice cores. This new record shows at least 12 major climate fluctuations within marine isotope stage 5 (about 70,000–130,000 years before the present).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, the Mean Transit Time and Mixing Model Analysis methods are combined to unravel the runoff generation process of the San Francisco River basin (73.5 km**2) situated on the Amazonian side of the Cordillera Real in the southernmost Andes of Ecuador. The montane basin is covered with cloud forest, sub-páramo, pasture and ferns. Nested sampling was applied for the collection of streamwater samples and discharge measurements in the main tributaries and outlet of the basin, and for the collection of soil and rock water samples. Weekly to biweekly water grab samples were taken at all stations in the period April 2007-November 2008. Hydrometric data, Mean Transit Time and Mixing Model Analysis allowed preliminary evaluation of the processes controlling the runoff in the San Francisco River basin. Results suggest that flow during dry conditions mainly consists of lateral flow through the C-horizon and cracks in the top weathered bedrock layer, and that all subcatchments have an important contribution of this deep water to runoff, no matter whether pristine or deforested. During normal to low precipitation intensities, when antecedent soil moisture conditions favour water infiltration, vertical flow paths to deeper soil horizons with subsequent lateral subsurface flow contribute most to streamflow. Under wet conditions in forested catchments, streamflow is controlled by near surface lateral flow through the organic horizon. Exceptionally, saturation excess overland flow occurs. By absence of the litter layer in pasture, streamflow under wet conditions originates from the A horizon, and overland flow.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vertical fluxes of autochtonous detritus at different levels were estimated using the algorithm of structure-function analysis. The calculations are based on pelagic ecosystem parameters in the Kara Sea observed in September 1993 (temperature, primary production, biomass of phytoplankton, bacteria, protozoa, and zooplankton, trophic and size composition, etc.). At eight stations in different parts of the sea where sedimentation traps were set, the range of calculated fluxes of autochtonous detritus through the lower boundary of the water column was 13-90 mgC/m**2/day. The flux was much higher in the estuary of the Yenisey River (55-90 mgC/m**2/day) than in the northeastern regions (I8-50 mgC/m**2/day) and, especially, in the relatively deep southwestern part of the sea (13-35 mgC/m**2/day). The calculated fluxes of autochtonous detritus in shallow water regions (where conditions are variable and poorly known hydrologically and where outflow of allochtonous detritus is substantial) cannot be compared to data from sedimentation traps.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Reports dealing with ground-water conditions in New York": p. 91-93.