935 resultados para vortex shedding


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations of vortex velocity fluctuation in time domain have revealed a presence of low frequency velocity fluctuations which evolve with the different driven phases of the vortex state in a single crystal of 2H-NbSe2. The observation of velocity fluctuations with a characteristic low frequency is associated with the onset of nonlinear nature of vortex flow deep in the driven elastic vortex state. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the vortex behavior of YBa2Cu3O7-delta thin films sandwiched between two ferromagnetic layers (La0.7Sr0.3MnO3/YBa2Cu3O7-delta/La0.7Sr0.3MnO3). The magnetization study on La0.7Sr0.3MnO3/YBa2Cu3O7-delta/La0.7Sr0.3MnO3 trilayers conspicuously shows the presence of both ferromagnetic and diamagnetic phases. The magnetotransport study on the trilayers reveals a significant reduction in the activation energy (U) for the vortex motion in YBa2Cu3O7-delta. Besides, the ``U'' exhibits a logarithmic dependence on the applied magnetic field which directly indicates the existence of decoupled two-dimensional (2D) pancake vortices present in the CuO2 layers. The evidence of 2D decoupled vortex behavior in La0.7Sr0.3MnO3/YBa2Cu3O7-delta/La0.7Sr0.3MnO3 is believed to arise from (a) the weakening of superconducting coherence length along the c-axis and (b) enhanced intraplane vortex-vortex interaction due to the presence of ferromagnetic layers. (C) 2010 American Institute of Physics. doi: 10.1063/1.3524545]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach to vortex dynamics is outlined, a new form being obtained for the pair potential forces on a vortex. A microscopic calculation of the vortex inertial mass is presented. Quantum effects on vortex lattice melting are briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach to vortex dynamics is outlined, a new form being obtained for the pair potential forces on a vortex. A microscopic calculation of the vortex inertial mass is presented. Quantum effects on vortex lattice melting are briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general kind of Brownian vortices is demonstrated by applying an external nonconservative force field to a colloidal particle bound by a conservative optical trapping force at a liquid-air interface. As the liquid medium is translated at a constant velocity with the bead trapped at the interface, the drag force near the surface provides enough rotational component to bias the particle's thermal fluctuations in a circulatory motion. The interplay between the thermal fluctuations and the advection of the bead in constituting the vortex motions is studied, and we infer that the angular velocity of the circulatory motion offers a comparative measure of the interface fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental results are presented that show that the translational velocities of piston generated vortex rings often undergo oscillations, similar to those recently discovered for drop generated rings. An attempt has been made to minimize uncertainties by utilizing both dye and hydrogen bubbles for visualization and carefully repeating measurements on the same ring and on different realizations under the same nominal piston conditions. The results unambiguously show that under most conditions, both for laminar and turbulent rings and for rings generated from pipes and orifices, the oscillations are present. The present results, together with the earlier results on drop generated rings, give support to the view that translational velocity oscillations are probably an inherent feature of translating vortex ring fields. (C) 1995 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete vortex simulations of the mixing layer carried out in the past have usually involved large induced velocity fluctuations, and thus demanded rather long time-averaging to obtain satisfactory values of Reynolds stresses and third-order moments. This difficulty has been traced here, in part, to the use of discrete vortices to model what in actuality are continuous vortex sheets. We propose here a novel two-dimensional vortex sheet technique for computing mixing layer flow in the limit of infinite Reynolds number. The method divides the vortex sheet into constant-strength linear elements, whose motions are computed using the Biot-Savart law. The downstream far-field is modelled by a steady vorticity distribution derived by application of conical similarity from the solution obtained in a finite computational domain. The boundary condition on the splitter plate is satisfied rigorously using a doublet sheet. The computed large-scale roll-up of the vortex sheet is qualitatively similar to experimentally obtained shadow-graphs of the plane turbulent mixing layer. The mean streamwise velocity profile and the growth rate agree well with experimental data. The presently computed Reynolds stresses and third-order moments are comparable with experimental and previous vortex-dynamical results, without using any external parameter (such as the vortex core-size) of the kind often used in the latter. The computed autocorrelations are qualitatively similar to experimental results along the top and bottom edges of the mixing layer, and show a well-defined periodicity along the centreline. The accuracy of the present computation is independently established by demonstrating negligibly small changes in the five invariants (including the Hamiltonian) in vortex dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here a critical assessment of two vortex approaches (both two-dimensional) to the modelling of turbulent mixing layers. In the first approach the flow is represented by point vortices, and in the second it is simulated as the evolution of a continuous vortex sheet composed of short linear elements or ''panels''. The comparison is based on fresh simulations using approximately the same number of elements in either model, paying due attention in both to the boundary conditions far downstream as well as those on the splitter plate from which the mixing layer issues. The comparisons show that, while both models satisfy the well-known invariants of vortex dynamics approximately to the same accuracy, the vortex panel model, although ultimately not convergent, leads to smoother roll-up and values of stresses and moments that are in closer agreement with the experiment, and has a higher computational efficiency for a given degree of convergence on moments. The point vortex model, while faster for a given number of elements, produces an unsatisfactory roll-up which (for the number of elements used) is rendered worse by the incorporation of the Van der Vooren correction for sheet curvature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, we study the transverse vortex-induced vibrations of an elastically mounted rigid cylinder in a fluid flow. We employ a technique to accurately control the structural damping, enabling the system to take on both negative and positive damping. This permits a systematic study of the effects of system mass and damping on the peak vibration response. Previous experiments over the last 30 years indicate a large scatter in peak-amplitude data ($A^*$) versus the product of mass–damping ($\alpha$), in the so-called ‘Griffin plot’. A principal result in the present work is the discovery that the data collapse very well if one takes into account the effect of Reynolds number ($\mbox{\textit{Re}}$), as an extra parameter in a modified Griffin plot. Peak amplitudes corresponding to zero damping ($A^*_{{\alpha}{=}0}$), for a compilation of experiments over a wide range of $\mbox{\textit{Re}}\,{=}\,500-33000$, are very well represented by the functional form $A^*_{\alpha{=}0} \,{=}\, f(\mbox{\textit{Re}}) \,{=}\, \log(0.41\,\mbox{\textit{Re}}^{0.36}$). For a given $\mbox{\textit{Re}}$, the amplitude $A^*$ appears to be proportional to a function of mass–damping, $A^*\propto g(\alpha)$, which is a similar function over all $\mbox{\textit{Re}}$. A good best-fit for a wide range of mass–damping and Reynolds number is thus given by the following simple expression, where $A^*\,{=}\, g(\alpha)\,f(\mbox{\textit{Re}})$: \[ A^* \,{=}\,(1 - 1.12\,\alpha + 0.30\,\alpha^2)\,\log (0.41\,\mbox{\textit{Re}}^{0.36}). \] In essence, by using a renormalized parameter, which we define as the ‘modified amplitude’, $A^*_M\,{=}\,A^*/A^*_{\alpha{=}0}$, the previously scattered data collapse very well onto a single curve, $g(\alpha)$, on what we refer to as the ‘modified Griffin plot’. There has also been much debate over the last three decades concerning the validity of using the product of mass and damping (such as $\alpha$) in these problems. Our results indicate that the combined mass–damping parameter ($\alpha$) does indeed collapse peak-amplitude data well, at a given $\mbox{\textit{Re}}$, independent of the precise mass and damping values, for mass ratios down to $m^*\,{=}\,1$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current-voltage (I-V) characteristics of quench condensed, superconducting, ultrathin Bi films in a magnetic field are reported. These I-V's show hysteresis for all films, grown both with and without thin Ge underlayers. Films on Ge underlayers, close to superconductor-insulator transition, show a peak in the critical current, indicating a structural transformation of the vortex solid. These underlayers, used to make the films more homogeneous, are found to be more effective in pinning the vortices. The upper critical fields (B-c2) of these films are determined from the resistive transitions in perpendicular magnetic field. The temperature dependence of the upper critical field is found to differ significantly from Ginzburg-Landau theory, after modifications for disorder.