886 resultados para volleyball spike


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, we study the effect of feature selection in the spike detection and sorting accuracy.We introduce a new feature representation for neural spikes from multichannel recordings. The features selection plays a significant role in analyzing the response of brain neurons. The more precise selection of features leads to a more accurate spike sorting, which can group spikes more precisely into clusters based on the similarity of spikes. Proper spike sorting will enable the association between spikes and neurons. Different with other threshold-based methods, the cepstrum of spike signals is employed in our method to select the candidates of spike features. To choose the best features among different candidates, the Kolmogorov-Smirnov (KS) test is utilized. Then, we rely on the superparamagnetic method to cluster the neural spikes based on KS features. Simulation results demonstrate that the proposed method not only achieve more accurate clustering results but also reduce computational burden, which implies that it can be applied into real-time spike analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, hidden Markov models (HMM) is studied for spike sorting. We notice that HMM state sequences have capability to represent spikes precisely and concisely. We build a HMM for spikes, where HMM states respect spike significant shape variations. Four shape variations are introduced: silence, going up, going down and peak. They constitute every spike with an underlying probabilistic dependence that is modelled by HMM. Based on this representation, spikes sorting becomes a classification problem of compact HMM state sequences. In addition, we enhance the method by defining HMM on extracted Cepstrum features, which improves the accuracy of spike sorting. Simulation results demonstrate the effectiveness of the proposed method as well as the efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding neural functions requires knowledge from analysing electrophysiological data. The process of assigning spikes of a multichannel signal into clusters, called spike sorting, is one of the important problems in such analysis. There have been various automated spike sorting techniques with both advantages and disadvantages regarding accuracy and computational costs. Therefore, developing spike sorting methods that are highly accurate and computationally inexpensive is always a challenge in the biomedical engineering practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural spikes define the human brain function. An accurate extraction of spike features leads to better understanding of brain functionality. The main challenge of feature extraction is to mitigate the effect of strong background noises. To address this problem, we introduce a new feature representation for neural spikes based on Cepstrum of multichannel recordings. Simulation results indicated that the proposed method is more robust than the existing Haar wavelet method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is crucial for a neuron spike sorting algorithm to cluster data from different neurons efficiently. In this study, the search capability of the Genetic Algorithm (GA) is exploited for identifying the optimal feature subset for neuron spike sorting with a clustering algorithm. Two important objectives of the optimization process are considered: to reduce the number of features and increase the clustering performance. Specifically, we employ a binary GA with the silhouette evaluation criterion as the fitness function for neuron spike sorting using the Super-Paramagnetic Clustering (SPC) algorithm. The clustering results of SPC with and without the GA-based feature selector are evaluated using benchmark synthetic neuron spike data sets. The outcome indicates the usefulness of the GA in identifying a smaller feature set with improved clustering performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinanthropometric characteristics are used by the sports science as selection criteria and detection of talents. Hence, this study aimed at comparing the anthropometrical profile, the body composition, the somatotype and the vertical jumps of the beach volleyball players. This study consists of 79 male beach volleyball players, being forty nine (n=49) Brazilian participants of the National Circuit and thirty (n=30) of 15 countries participating in the XV Pan American Games. In order to analyze the vertical jumps of the Brazilian the participants were allocated into two groups (G1 and G2) in agreement with the national ranking of their teams. The vertical jump protocol developed by Smith and collaborators was used to evaluate the vertical jumps of spike and block. The Heath-Carter anthropometrical technique (1990) was used for calculating the somatotype. The Student s t test with the Bonferroni adjustment was used to calculate the differences among the investigated variables. The multiple regression analysis was used to identify the contributions of the anthropometrical variables in the performance of the vertical jumps and the multivariance analysis was used to calculate the differences among the components of the somatotype. The Brazilian athletes of G1 were better than G2 in the spike jump (p <0.01), block jump (p <0.01) and in the block difference (p <0.01). The prediction model of the spike jump of G2 included the body mass and standing spike reach (adjusted R2 = 0.77), the body mass and the standing block reach were also included in the model of the block jump (adjusted R2 = 0.73). The regression model of G1 was not statistically significant. As for the somatotype, statistically significant differences were found between the Brazilians and the Pan Americans (Wilks' lambda = 0.498; p <0.05). The Brazilian somatotype was classified as balanced mesomorph (2.7-4.3-3.0) and the Pan American somatotype as endomorphic mesomorph (3.5-4.6-2.4). As to the specific position of the block game (2.8-4.3-2.9) and the defense game (2.6-4.4-3.0), the Brazilian somatotype was classified as balanced mesomorph and the Pan American somatotype, the block (3.7-4.4-2.4) and the defense (3.4-4.9-2.3), was classified as endomorphic mesomorph. In conclusion, the vertical jump height (spike and block) influences the male Brazilian beach volleyball players performance. The physical type of the Brazilian blockers and defenders was similar with relationship to the somatotype. The Brazilian and Pan American beach volleyball players differ in terms of kinanthropometric characteristics. This work had a multidisciplinary feature with the participation of several departments and laboratories, like the Physiotherapy Department, the Nutrition Department, the Physical Education Laboratory, thus corroborating the multidisciplinary research feature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Identify phenotype and genotype parameters of female volleyball players at different performance levels to help in player selection. Methods: We identified characteristics of phenotype and genotype using the somatotype method (Heath Carter); anthropometry (weight, height and fat percentage); dermatoglyphics (Cummins and Midlo s method) as well as applying physical quality tests (Shuttle Run to assess agility and the Sargent Jump Test adapted for spike and block reach). The sample was composed of 179 players (54 from national teams and 125 from state teams). Results: Somatotype was similar among the performance levels in the mesomorphic component. The Height and ectomorphic component were greater in national team players as was spike and block reach. The vertical jump height for the spike was similar between the national under-17 team and the state teams observed, but in the block jump the lower level players were better. The dermatoglyphics characteristics identified were similar among the groups studied. Conclusions: The results of the variables studied show that somatotype, height, spike reach and block reach are fundamental parameters in player selection and in the specific characteristics of each game position of this sport. This paper proposes a multidisciplinary approach applicable in the fields of physical education, medicine and nutrition

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to describe, interpret and compare the EMG activation patterns of ankle muscles - tibialis anterior (TA), peroneus longus (PL) and gastrocnemius lateralis (GL) - in volleyball players with and without ankle functional instability (FI) during landing after the blocking movement. Twenty-one players with FI (IG) and 19 controls (CG) were studied. The cycle of movement analyzed was the time period between 200 ms before and 200 ms after the time of impact determined by ground reaction forces. The variables were analyzed for two different phases: pre-landing (200 ms before impact) and post-landing (200 ms after impact). The RMS values and the timing of onset activity were calculated for the three studied muscles, in both periods and for both groups. The co-activation index for TA and PL, TA and GL were also calculated. Individuals with FI presented a lower RMS value pre-landing for PL (CG = 43.0 perpendicular to 22.0; IG = 26.2 perpendicular to 8.4, p < 0.05) and higher RMS value post-landing (CG = 47.5 perpendicular to 13.3; IG = 55.8 perpendicular to 21.6, p < 0.10). Besides that, in control group PL and GL activated first and simultaneously, and TA presented a later activation, while in subjects with FI all the three muscles activated simultaneously. There were no significant differences between groups for co-activation index. Thus, the rate of contraction between agonist and antagonist muscles is similar for subjects with and without FI but the activation individually was different. Volleyball players with functional instability of the ankle showed altered patterns of the muscles that play an important role in the stabilization of the foot-ankle complex during the performance of the blocking movement, to the detriment of the ligament complex, and this fact could explain the usual complaints in these subjects. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To examine the influence of a preventative training program (PTP) on sagittal plane kinematics during different landing tasks and vertical jump height (VJH) in males. Design: Six weeks prospective exercise intervention. Participants: Fifteen male volleyball athletes (13 ± 0.7 years, 1.70 ± 0.12 m, 60 ± 12 kg). Interventions: PTP consisting of plyometric, balance and core stability exercises three times per week for six weeks. Bilateral vertical jumps with double leg (DL) and single leg (SL) landings were performed to measure the effects of training. Main outcome measurements: Kinematics of the knee and hip before and after training and VJH attained during both tasks after training. The hypothesis was that the PTP would produce improvements in VJH, but would not generate great changes in biomechanical behavior. Results: The only change identified for the SL was the longest duration of landing, which represents the time spent from initial ground contact to maximum knee flexion, after training, while increased angular displacement of the knee was observed during DL. The training did not significantly alter the VJH in either the SL (difference: 2.7 cm) or the DL conditions (difference: 3.5 cm). Conclusions: Despite the PTP's effectiveness in inducing some changes in kinematics, the changes were specific for each task, which highlights the importance of the specificity and individuality in selecting prevention injury exercises. Despite the absence of significant increases in the VJH, the absolute differences after training showed increases corroborating with the findings of statistically powerful studies that compared the results with control groups. The results suggest that short-term PTPs in low risk young male volleyball athletes may enhance performance and induce changes in some kinematic parameters. © 2012 Elsevier Ltd.