132 resultados para volatilization
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo do trabalho foi estudar as características morfogenéticas e estruturais do capim-Tanzânia, a produção de forragem, as perdas de nitrogênio (N) por volatilização, reservas orgânicas e a avaliação do sistema radicular sob doses de nitrogênio sob pastejo. O experimento foi instalado na área Fazenda Experimental de Iguatemi da Universidade Estadual de Maringá, no período de março de 2007 a março de 2008. O delineamento experimental utilizado foi de blocos completos ao acaso, com parcelas subdivididas com quatro repetições. Nas parcelas, encontravam-se as doses de N (0, 150, 300 e 450 kg ha-1 de N) e, nas sub-parcelas, as estações do ano. As perdas de N por volatilização foram quantificadas depois da adubação N (1, 2, 3, 6, 9, 12 e 15 dias). As amostragens das raízes foram realizadas nas profundidades de 0-10, 10-20 e 20-40 cm. A aplicação do fertilizante N na pastagem foi parcelada em três aplicações. A produção de massa seca total e de lâmina foliar de forragem respondeu linearmente até 282 kg ha-1 de N na estação do verão. A adubação nitrogenada exerce efeito positivo nas taxas de alongamento e aparecimento foliar, e no número de folhas vivas em plantas de capim-Tanzânia nas estações da primavera e verão. Elevadas adubações nitrogenadas associada a intervalos menores de pastejo promovem uma maior porcentagem de lâmina foliar; no manejo de pastos de capim-Tanzânia sob lotação rotacionada com altura de 70 cm na entrada dos animais para o pastejo e saída com 30 cm de altura do resíduo. A interação entre o nível de adubação e o período depois da aplicação de uréia foi significativa para a variável volatilização acumulada de N-NH3. A aplicação da uréia acarreta perdas percentuais mais elevadas de N nos três primeiros dias após a aplicação. A perda média acumulada de N-NH3 no período para as três estações do ano... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
The crop demand by nitrogen varies from one crop to other as well as the amount and application time, and this nutrient can be lost by leaching, volatilization and erosion. The objective of this study was to evaluate doses, sources and times of nitrogen application in rice of high lands cropped in no till system. The work was conducted in Selviria, State of Mato Grosso do Sul, Brazil, in a soil originally under Cerrado vegetation. A randomized blocks design, with the treatments disposed in a factorial scheme 5x3x2 was used. The treatments were constituted by five nitrogen doses (0, 50, 100, 150 and 200 kg ha(-1)), three nitrogen sources (urea; ammonium sulfonitrate plus nitrification inhitor and ammonium sulfate) and two application times (at sowing or at flower bud differentiation), with four repetitions. The sources of nitrogen, as well as the application times had similar effects for most of evaluations. The N doses influenced linearly or with quadratic adjustment the plant height, N leaf content and grains yield, in the two growing seasons. The chlorophyll content and the number of ears m(-2) were affected only, in the first year. The highest yield in the growing season of 2007/08 was obtained with the dose of 149 kg ha(-1) of N. In 2008/09 growing season the increase of N doses provided increment in the grains rice yield, until the maximum dose evaluated (200 kg ha(-1) of N).
Resumo:
This work presents experimental results of some physical properties of antimony phosphate glasses with compositions (x) Sb2O3 - (1-x) P2O5 (x = 0.75, 0.85, 0.90). Mechanical, thermal, optical and electrical properties were investigated: density, elastic moduli (Young's moduli and Poisson's ratio), Vickers microhardness, coefficient of thermal expansion, glass transition temperature, refractive index and electrical conductivity (for x = 0.75). There was no evidence of electronic conductivity by bipolaron hopping. Measurements of energy dispersive spectroscopy (EDS) showed that volatilization of Sb2O3 takes place during the glass melting
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Spills can ocurr during oil productive chain and contaminate various environments due to the toxicity of monoaromatics hidrocarbons. Toluene stands out for being agressive to the nervous sistem and teratogenic, with high mobility and solubility in water, which facilitates environmental impact. Studies show that fungi are potential aromatic compounds assimilators, encouraging new researches about its use on the recovery of contaminated sites. This study aimed to select and characterize fungus with potential for biorremediation of toluene. 50 fungi were selected of the Collection of Microorganisms of Interest for Oil Gas and Biofuels, of UNESP Rio Claro, all of which were isolated from sites contaminated with monoaromatic hydrocarbons. Two trials were realized to select the microorganism with greater potential. The first test evaluated fungal growth under toluene saturated atmosphere. 24 fungi were chosen because its greater biomass production to participate in the next trial, the degradation in plates test, where the blue redox agente, DCPIP, indicates the degradation reaction, turning colorless. From this teste was possible to select one isolate which showed higher growth and stronger medium discoloration as the microorganism with the greatest potential to assimilate toluene. The Trichoderma cf. koningii had its potential evaluated through gas cromatography. The experiment proved the efficiency of the methodology, with positives results from the method validation and the effectiveness demonstrated of the LA-PHA-PACK bottles to prevent the volatilization of toluene during the 21 days of experiment. Being reliable its use for monitoring toluene decay associating it with degradation. This results are important because there aren't many methodologies and vials efficient to the purpose of this work. In the present study the degradation rates demonstrated no significant decay of the concentration of hydrocarbon. That may be related to the...
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The photopolimerization it is be widely used nowadays in different fields as materials, medicine and dentistry. To occur that synthesis is utilized dimethacrylates monomers and photoinitiators, the photoinitiator system more usual is camphorquinone/tertiary amine (ethyl-p-dimethylamino benzoate). However is knowledge that tertiary amines are toxics, so the aim of this work is replace toxic amine compounds to non-toxic compounds as glycerol and inositol. Therefore was used the FTIR technic to calculate the monomers conversion degree as well as Thermogravimetric Analysis-simultaneous differential thermal analysis (TG-DTA) and Differential Scanning Calorimetry (DSC) to evaluate thermal stability, combustion rate, degradation steps, oxidation and volatilization of all samples. The study shown no significant difference about thermal behavior of all polymers, the initiators system for efficient and more fastness was camphorquinone /tertiary amine system followed by ca mph o r quinone/glycerol system
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Antarctic plant communities are dominated by lichens and mosses which accumulate semivolatile organic compounds (SOCs) such as polybrominated diphenyl ethers (PBDEs) directly from the atmosphere. Differences in the levels of PBDEs observed in lichens and mosses collected at King George Island in the austral summers 2004-05 and 2005-06 are probably explained by environmental and/or plant parameters. Contamination of lichens showed a positive correlation with local precipitation, suggesting that wet deposition processes are a major mechanism controlling the uptake of most PBDE congeners. These findings are in agreement with physical-chemical data supporting that tetra- through hepta-BDEs in the Antarctic atmosphere are basically bound to aerosols. Conversely, accumulation of PBDEs in mosses appears to be controlled by other environmental factors and/or plant-specific characteristics. Model simulations demonstrated that an ocean-atmosphere coupling may have played a role in the long-range transport of less volatile SOCs such as PBDEs to Antarctica. According to simulations, the atmosphere is the most important transport medium for PBDEs while the surface ocean serves as a temporary storage compartment, boosting the deposition/volatilization ""hopping"" effect similarly to vegetation on continents. (C) 2011 Elsevier B.V. All rights reserved.