964 resultados para visual system
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
An in vivo study was conducted to verify the ability of laser fluorescence (LF) to assess the activity status of occlusal caries in primary teeth, using different air-drying times. Occlusal sites (707) were examined using LF (DIAGNOdent) after air-drying for 3 s and 15 s, and the difference between readings (DIF15 s-3 s) was calculated. For concurrent validation of LF, visual criteria-Nyvad (NY) and Lesion Activity Assessment associated with the International Caries Detection and Assessment System (LAA-ICDAS)-were the reference standards for lesion activity. Histological exam using a pH-indicator dye (0.1% methyl red) was performed in 46 exfoliated/extracted teeth for criterion validation. LF readings and DIF15 s-3 s were compared using Kruskall-Wallis and Mann-Whitney tests. Receiver operating characteristic analyses were performed and validity parameters calculated, considering the caries activity assessment. Using NY, active lesions (3 s: 30.0 +/- 29.3; 15 s: 34.2 +/- 30.6) presented higher LF readings than inactive lesions (3 s: 17.0 +/- 16.3; 15 s: 19.2 +/- 17.3; p <0.05), different from LAA-ICDAS. Active cavitated caries resulted in higher LF readings (3 s: 50.3 +/- 3.5; 15 s: 54.7 +/- 30.2) than inactive cavitated caries (3 s: 19.9 +/- 16.3; 15 s: 22.8 +/- 16.8). Therefore, LF can distinguish cavitated active and inactive lesions classified by NY, but not by LAA-ICDAS; however, this difference might be related to the visual system rather than to LF. The air-drying time could be an alternative to improve the caries activity assessment; however, longer air-drying time is suggested to be tested subsequently. (C) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3463007]
Resumo:
This study was designed to identify perseverative reaching tendencies in children with intellectual disabilities (ID), over a period of 1 year, by using a version of the Piagetian ""A not B"" task modified by Smith, Thelen, Titzer, and McLin (1999). Nine children (4.8 years old at the beginning of the study) with intellectual disabilities (ID) (eight with mild ID; one with moderate ID) were assessed every 3 months for approximately 1 year, totaling four assessments. The results indicate that in a majority of the cases perseveration was resilient, and that the visual system decoupled from the reaching, especially towards the later assessment periods at the end of the year. Across assessment periods variability seemed to increase in each trial (A1 through B2) for reached target. These individuals, vulnerable to distraction and attention and to short-term memory deficits, are easily locked into rigid modes of motor habits. They are susceptible to perseveration while performing simple task contexts that are typically designed for 10- to 12-month-old, normally-developing infants, therefore creating strong confinements to stable, rigid modes of elementary forms of behavior. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Chondroitin sulfate proteoglycans display both inhibitory and stimulatory effects on cell adhesion and neurite outgrowth in vitro. The functional activity of these proteoglycans appears to be context specific and dependent on the presence of different chondroitin sulfate-binding molecules. Little is known about the role of chondroitin sulfate proteoglycans in the growth and guidance of axons in vivo. To address this question, we examined the effects of exogenous soluble chondroitin sulfates on the growth and guidance of axons arising from a subpopulation of neurons in the vertebrate brain which express NOC-2, a novel glycoform of the neural cell adhesion molecule N-CAM. Intact brains of stage 28 Xenopus embryos were unilaterally exposed to medium containing soluble exogenous chondroitin sulfates. When exposed to chondroitin sulfate, NOC-2(+) axons within the tract of the postoptic commissure failed to follow their normal trajectory across the ventral midline via the ventral commissure in the midbrain. Instead, these axons either stalled or grew into the dorsal midbrain or continued growing longitudinally within the ventral longitudinal tract. These findings suggest that chondroitin sulfate proteoglycans indirectly modulate the growth and guidance of a subpopulation of forebrain axons by regulating either matrix-bound or cell surface cues at specific choice points within the developing vertebrate brain. (C) 1998 Academic Press.
Resumo:
We present a review of perceptual image quality metrics and their application to still image compression. The review describes how image quality metrics can be used to guide an image compression scheme and outlines the advantages, disadvantages and limitations of a number of quality metrics. We examine a broad range of metrics ranging from simple mathematical measures to those which incorporate full perceptual models. We highlight some variation in the models for luminance adaptation and the contrast sensitivity function and discuss what appears to be a lack of a general consensus regarding the models which best describe contrast masking and error summation. We identify how the various perceptual components have been incorporated in quality metrics, and identify a number of psychophysical testing techniques that can be used to validate the metrics. We conclude by illustrating some of the issues discussed throughout the paper with a simple demonstration. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, we describe a model of the human visual system (HVS) based on the wavelet transform. This model is largely based on a previously proposed model, but has a number of modifications that make it more amenable to potential integration into a wavelet based image compression scheme. These modifications include the use of a separable wavelet transform instead of the cortex transform, the application of a wavelet contrast sensitivity function (CSP), and a simplified definition of subband contrast that allows us to predict noise visibility directly from wavelet coefficients. Initially, we outline the luminance, frequency, and masking sensitivities of the HVS and discuss how these can be incorporated into the wavelet transform. We then outline a number of limitations of the wavelet transform as a model of the HVS, namely the lack of translational invariance and poor orientation sensitivity. In order to investigate the efficacy of this wavelet based model, a wavelet visible difference predictor (WVDP) is described. The WVDP is then used to predict visible differences between an original and compressed (or noisy) image. Results are presented to emphasize the limitations of commonly used measures of image quality and to demonstrate the performance of the WVDP, The paper concludes with suggestions on bow the WVDP can be used to determine a visually optimal quantization strategy for wavelet coefficients and produce a quantitative measure of image quality.
Resumo:
The olfactory neuroepithelium is a highly plastic region of the nervous system that undergoes continual turnover of primary olfactory neurons throughout life. The mechanisms responsible for persistent growth and guidance of primary olfactory axons along the olfactory nerve are unknown. In the present study, we used antibodies against the Eph-related receptor, EphA5, to localise EphA5, and recombinant EDhA5-IgG fusion protein to localise its ligands. We found that although both EphA5 and its ligands were both expressed by primary olfactory neurons within the embryonic olfactory nerve pathway, there was no graded or complementary expression pattern. In contrast, the expression patterns altered postnatally such that primary olfactory neurons expressed the ligands, whereas the second-order olfactory neurons, the mitral cells, expressed EphA5. The role of EphA5 was analysed by blocking EphA5-ligand interactions in explant cultures of olfactory neuroepithelium using anti-EphA5 antibodies and recombinant EphA5. These perturbations reduced neurite outgrowth from explant cultures and suggest that intrafascicular axon repulsion may serve to limit adhesion and optimise conditions for axon growth. (C) 2000 Wiley-Liss, Inc.
Resumo:
Bright coloration and complex visual displays are frequent and well described in many lizard families. Reflectance spectrometry which extends into the ultraviolet (UV) allows measurement of such coloration independent of our visual system. We examined the role of colour in signalling and mate choice in the agamid lizard Ctenophorus ornatus. We found that throat reflectance strongly contrasted against the granite background of the lizards' habitat. The throat may act as a signal via the head-bobbing and push-up displays of C. ornatus. Dorsal coloration provided camouflage against the granite background, particularly in females. C. ornatus was sexually dichromatic for all traits examined including throat UV reflectance which is beyond human visual perception. Female throats were highly variable in spectral reflectance and males preferred females with higher throat chroma between 370 and 400 nm. However, female throat UV chroma is strongly correlated to both throat brightness and chest UV chroma and males may choose females on a combination of these colour variables. There was no evidence that female throat or chest coloration was an indicator of female quality. However, female brightness significantly predicted a female's laying date and, thus, may signal receptivity. One function of visual display in this species appears to be intersexual signalling, resulting in male choice of females.
Resumo:
Wrasses (Labridae) are the second largest family of fishes on the: Great Barrier Reef (after the Gobiidae) and, in terms of morphology and lifestyle, one of the most diverse. They occupy all zones of the reef from the very shadow reef flats to deep slopes, feeding on a variety of fauna. Many wrasses also have elaborately patterned bodies and reflect a range of colours from ultraviolet (UV) to far red. As a first step to investigating the visual system of these fishes we measured the transmission properties of the ocular media of 36 species from the Great Barrier Reef, Australia, and Hawaii, California and the Florida Keys, USA. Transmission measurements were made of whole eyes with a window cut into the back, and also of isolated lenses and corneas. Based on the transmission properties of the corneas the species could be split into two distinct groups within which the exact wavelength of the cut-off was variable. One group had visibly yellow corneas, while the corneas of the other group appeared clear to human observers. Five species had ocular media that transmitted wavelengths below 400 nm, making a perception of UV wavelengths for those species possible. Possible functional roles for the different filler types are discussed.
Resumo:
Visual system abnormalities are commonly encountered in the fetal alcohol syndrome although the level of exposure at which they become manifest is uncertain. In this study we have examined the effects of either low (ETLD) or high dose (ETHD) ethanol, given between postnatal days 4-9, on the axons of the rat optic nerve. Rats were exposed to ethanol vapour in a special chamber for a period of 3 h per day during the treatment period. The blood alcohol concentration in the ETLD animals averaged similar to 171 mg/dl and in the ETHD animals similar to 430 mg/dl at the end of the treatment on any given day. Groups of 10 and 30-d-old mother-reared control (MRC), separation control (SC), ETLD and ETHD rats were anaesthetised with an intraperitoneal injection or ketamine and xylazine, and killed by intracardiac perfusion with phosphate-buffered glutaraldehyde. In the 10-d-old rat optic nerves there was a total of similar to 145000-165000 axons in MRC, SC and ETLD animals. About 4 % of these fibres were myelinated. The differences between these groups were not statistically significant. However, the 10-d-old ETHD animals had only about 75000 optic nerve axone (P < 0.05) of which about 2.8 % were myelinated. By 30 d of age there was a total of between 75000 90000 optic nerve axons, irrespective of the group examined. The proportion of axons which were myelinated at this age was still significantly lower (P < 0.001) in the ETHD animals (similar to 77 %) than in the other groups (about 98 %). It is concluded that the normal stages of development and maturation of the rat optic nerve axons, as assessed in this study, can be severely compromised by exposure to a relatively high (but not low) dose of ethanol between postnatal d 4 and 9.
Resumo:
The compound eyes of mantis shrimps, a group of tropical marine crustaceans, incorporate principles of serial and parallel processing of visual information that may be applicable to artificial imaging systems. Their eyes include numerous specializations for analysis of the spectral and polarizational properties of light, and include more photoreceptor classes for analysis of ultraviolet light, color, and polarization than occur in any other known visual system. This is possible because receptors in different regions of the eye are anatomically diverse and incorporate unusual structural features, such as spectral filters, not seen in other compound eyes. Unlike eyes of most other animals, eyes of mantis shrimps must move to acquire some types of visual information and to integrate color and polarization with spatial vision. Information leaving the retina appears to be processed into numerous parallel data streams leading into the central nervous system, greatly reducing the analytical requirements at higher levels. Many of these unusual features of mantis shrimp vision may inspire new sensor designs for machine vision
Resumo:
Female choice has rarely been documented in reptiles. In this study we examined the variation, condition-dependence and female preference for a range of male morphological and colour traits in the agamid lizard, Ctenophorus ornatus. Colour traits were measured with reflectance spectrophotometry which allows the accurate quantification of colour traits independent of the human visual system. All the colour traits varied greatly in brightness but only the throat showed high variation in the spectral shape. For the morphological traits, chest patch size showed the highest amount of variation and was also condition-dependent. Males with a larger chest patch also had a patch which was a darker black. Female mate choice trials were conducted on male chest patch size and body size, which is the trait females have preferred in other lizard species. Females showed no preference, measured as spatial association, for larger males or males with bigger chest patches. In post-hoc tests females did not prefer males with brighter throats or darker chests, Our findings suggest that females show no spatial discrimination between males on the basis of a range of traits most expected to influence female choice.
Resumo:
The present study provides a detailed description of morphological and hodological aspects of the glomerular nucleus in the weakly electric fish Gymnotus sp., and explores the evolutionary and functional implications flowing from this analysis. The glomerular nucleus of Gymnotus shows numerous morphological similarities with the glomerular nucleus of percomorph fish, although cytoarchitectonically simpler. In addition, congruence of the histochemical acetylcholinesterase (AChE) distribution with cytoarchitectonic data suggests that the glomerular nucleus, together with the ventromedial cell group of the medial subdivision of the preglomerular complex (PGm-vmc) rostrally, and the subglomerular nucleus (as identified by Maler et al. [1991] J Chem Neuroanat 4:1-38) caudally, may form a distinct longitudinally organized glomerular complex. Our results show that an important source of sensory afferents to the glomerular nucleus originates in the pretectal and electrosensorius nuclei. The glomerular nucleus in turn projects to the hypothalamus (inferior lobe and anterior hypothalamus), to the anterior tuberal nucleus, and to the medial region of the preglomerular nucleus (PGm). These data suggest that visual and electrosensory information reach the glomerular nucleus and are relayed to the hypothalamus and, via PGm, to the pallium. Such connections are similar to those of the glomerular nucleus in percomorphs and the posterior pretectal nucleus in osteoglossomorph, esocids, and salmonids, where they comprise one component of a visual processing pathway. In Gymnotiform fish, however, the pretectal region that projects to the glomerular nucleus is dominated by electrosensory input (visual input is minor), which is consistent with the dominant role of electroreception in these fish. J. Comp. Neurol. 519:1658-1676, 2011. (c) 2011 Wiley-Liss, Inc.
Resumo:
The process of establishing long-range neuronal connections can be divided into at least three discrete steps. First, axons need to be stimulated to grow and this growth must be towards appropriate targets. Second, after arriving at their target, axons need to be directed to their topographically appropriate position and in some cases, such as in cortical structures, they must grow radially to reach the correct laminar layer Third, axons then arborize and form synaptic connections with only a defined subpopulation of potential post-synaptic partners. Attempts to understand these mechanisms in the visual system have been ongoing since pioneer studies in the 1940s highlighted the specificity of neuronal connections in the retino-tectal pathway. These classical systems-based approaches culminated in the 1990s with the discovery that Eph-ephrin repulsive interactions were involved in topographical mapping. In marked contrast, it was the cloning of the odorant receptor family that quickly led to a better understanding of axon targeting in the olfactory system. The last 10 years have seen the olfactory pathway rise in prominence as a model system for axon guidance. Once considered to be experimentally intractable, it is now providing a wealth of information on all aspects of axon guidance and targeting with implications not only for our understanding of these mechanisms in the olfactory system but also in other regions of the nervous system.
Resumo:
A central problem in visual perception concerns how humans perceive stable and uniform object colors despite variable lighting conditions (i.e. color constancy). One solution is to 'discount' variations in lighting across object surfaces by encoding color contrasts, and utilize this information to 'fill in' properties of the entire object surface. Implicit in this solution is the caveat that the color contrasts defining object boundaries must be distinguished from the spurious color fringes that occur naturally along luminance-defined edges in the retinal image (i.e. optical chromatic aberration). In the present paper, we propose that the neural machinery underlying color constancy is complemented by an 'error-correction' procedure which compensates for chromatic aberration, and suggest that error-correction may be linked functionally to the experimentally induced illusory colored aftereffects known as McCollough effects (MEs). To test these proposals, we develop a neural network model which incorporates many of the receptive-field (RF) profiles of neurons in primate color vision. The model is composed of two parallel processing streams which encode complementary sets of stimulus features: one stream encodes color contrasts to facilitate filling-in and color constancy; the other stream selectively encodes (spurious) color fringes at luminance boundaries, and learns to inhibit the filling-in of these colors within the first stream. Computer simulations of the model illustrate how complementary color-spatial interactions between error-correction and filling-in operations (a) facilitate color constancy, (b) reveal functional links between color constancy and the ME, and (c) reconcile previously reported anomalies in the local (edge) and global (spreading) properties of the ME. We discuss the broader implications of these findings by considering the complementary functional roles performed by RFs mediating color-spatial interactions in the primate visual system. (C) 2002 Elsevier Science Ltd. All rights reserved.