977 resultados para vascular cells
Resumo:
Vascular dysfunction is recognised as an integrative marker of CVD. While dietary strategies aimed at reducing CVD risk include reductions in the intake of SFA, there are currently no clear guidelines on what should replace SFA. The purpose of this review was to assess the evidence for the effects of total dietary fat and individual fatty acids (SFA, MUFA and n-6 PUFA) on vascular function, cellular microparticles and endothelial progenitor cells. Medline was systematically searched from 1966 until November 2010. A total of fifty-nine peer-reviewed publications (covering fifty-six studies), which included five epidemiological, eighteen dietary intervention and thirty-three test meal studies, were identified. The findings from the epidemiological studies were inconclusive. The limited data available from dietary intervention studies suggested a beneficial effect of low-fat diets on vascular reactivity, which was strongest when the comparator diet was high in SFA, with a modest improvement in measures of vascular reactivity when high-fat, MUFA-rich diets were compared with SFA-rich diets. There was consistent evidence from the test meal studies that high-fat meals have a detrimental effect on postprandial vascular function. However, the evidence for the comparative effects of test meals rich in MUFA or n-6 PUFA with SFA on postprandial vascular function was limited and inconclusive. The lack of studies with comparable within-study dietary fatty acid targets, a variety of different study designs and different methods for determining vascular function all confound any clear conclusions on the impact of dietary fat and individual fatty acids on vascular function.
Resumo:
Primary cultures of vascular smooth muscle cells (VSMCs) from rats offer a good model system to examine the molecular basis of mechanism of vascular contraction-relaxation. However, during pathological conditions such as atherosclerosis and hypertension, VSMCs characteristically exhibit phenotypic modulation, change from a quiescent contractile to a proliferative synthetic phenotype, which impairs this mechanism of vascular contraction-relaxation. Taking in account that Myosin light chain (MLC) and ERK1/2 directly participate in the process of vascular contraction, the aim of the current study was to analyze the involvement of MLC and ERK1/2 signaling during the process of VSMCs phenotypic modulation. Primary cultures of VSMCs from rat thoracic aortas were isolated and submitted to different number of passages or to freezing condition. Semi-quantitative RT-PCR was used to evaluate the mRNA levels of VSMCs differentiation markers, and western blot assays were used to determine the MLC and ERK1/2 phosphorylation levels during VSMCs phenotypic modulation. Also, immunocytochemical experiments were performed to evaluate morphological alterations occurred during the phenotypic modulation. Elevated number of passages (up to 4) as well as the freezing/thawing process induced a significant phenotypic modulation in VSMCs, which was accompanied by diminished MLC and ERK1/2 phosphorylation levels. Phosphorylation of MLC was suppressed completely by the treatment with a synthetic inhibitor of MEK-1, a direct upstream of ERK1/2, PD98059. These findings provide that ERK1/2-promoted MLC phosphorylation is impaired during VSMCs phenotypic modulation, suggesting that ERK1/2 signaling pathway may represent a potential target for understanding the pathogenesis of several vascular disease processes frequently associated to this condition.
Resumo:
Although there are reports concerning a vascular adaptive response to stress in males, this is not yet defined in females. The aim of this study was to delineate functional gender differences in the rat vascular adaptive response to stress and to determine the ability of sex hormones to modulate the stress-induced vascular adaptive response. Responses to noradrenaline were evaluated in aortas, with and without endothelium, from intact, gonadectomized and gonadectomized-hormone-replaced males and females submitted or not to stress (2-h immobilization). Reactivity of the aorta of stressed and non-stressed intact males and females (n = 6-14 per group) was also examined in the presence of L-NAME or indomethacin. Stress decreased and gonadectomy increased maximal responses to noradrenaline in aortas with intact endothelium from both genders. Stress also reduced noradrenaline potency in males. In females, but not males, stress decreased the gonadectomy-induced noradrenaline hyper-reactivity to near that of intact non-stressed rats. Hormone replacement restored the gonadectomy-induced impaired vascular adaptive response to stress. L-NAME, but not indomethacin, abolished the stress-induced decrease in aorta reactivity of males and females. None of the procedures altered reactivity of aortas denuded of endothelium. Conclusion: Stress-induced vascular adaptive responses show gender differences. The magnitude of the adaptive response is dependent on testicular hormones and involves endothelial nitric oxide-system hyperactivity.
Resumo:
Granulocyte colony-stimulating factor (G-CSF) regulates granulocyte precursor cell proliferation, neutrophil survival, and activation. Cyclic hematopoiesis, a disease that occurs both in humans and grey collie dogs is characterized by cyclical variations in blood neutrophils. Although the underlying molecular defect is not known, long-term daily administration of recombinant G-CSF eliminates the severe recurrent neutropenia, indicating that expression of G-CSF by gene therapy would be beneficial. As a prelude to preclinical studies in affected collie dogs, we monitored hematopoiesis in rats receiving vascular smooth muscle cells transduced to express G-CSF. Cells transduced with LrGSN, a retrovirus expressing rat G-CSF, were implanted in the carotid artery and control animals received cells transduced with LASN, a retrovirus expressing human adenosine deaminase (ADA). Test animals showed significant increases in neutrophil counts for at least 7 weeks, with mean values of 3,670 +/- 740 cells/mu l in comparison to 1,870 +/- 460 cells/mu l in controls (p < 0.001). Thus, in rats G-CSF gene transfer targeted at vascular smooth muscle cells initiated sustained production of 1,800 neutrophils/mu l, a cell number that would provide clinical benefit to patients. Lymphocytes, red cells and platelets were not different between control and test animals (p > 0.05). These studies indicate that retrovirally transduced vascular smooth muscle cells can provide sustained clinically useful levels of neutrophils in vivo.
Resumo:
Delayed wound healing in patients taking bisphosphonates could result from decreased expression of growth factors, which are directly related to cell proliferation and migration. In this study, we evaluated the gene expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) by epithelial cells exposed to zoledronic acid 5 μmol for 48 h using real-time polymerase chain reaction. The gene expression of VEGF and bFGF by epithelial cells exposed to zoledronic acid decreased by 34% and 51%, respectively (p = 0.0001 and p = 0.0001). We conclude that zoledronic acid can decrease the expression of growth factors by epithelial cells. © 2013 The British Association of Oral and Maxillofacial Surgeons.
Resumo:
The objective of this study was to evaluate the culture of equine bone marrow mononuclear fraction and adipose tissue - derived stromal vascular fraction cells in two different cell culture media. Five adult horses were submitted to bone marrow aspiration from the sternum, and then from the adipose tissue of the gluteal region near the base of the tail. Mononuclear fraction and stromal vascular fraction were isolated from the samples and cultivated in DMEM medium supplemented with 10% fetal bovine serum or in AIM-V medium. The cultures were observed once a week with an inverted microscope, to perform a qualitative analysis of the morphology of the cells as well as the general appearance of the cell culture. Colony-forming units (CFU) were counted on days 5, 15 and 25 of cell culture. During the first week of culture, differences were observed between the samples from the same source maintained in different culture media. The number of colonies was significantly higher in samples of bone marrow in relation to samples of adipose tissue.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
One drawback of in vitro cell culturing is the dedifferentiation process that cells experience. Smooth muscle cells (SMC) also change molecularly and morphologically with long term culture. The main objective of this study was to evaluate if culture passages interfere in vascular SMC mechanical behavior. SMC were obtained from five different porcine arterial beds. Optical magnetic twisting cytometry (OMTC) was used to characterize mechanically vascular SMC from different cultures in distinct passages and confocal microscopy/western blotting, to evaluate cytoskeleton and extracellular matrix proteins. We found that vascular SMC rigidity or viscoelastic complex modulus (G) decreases with progression of passages. A statistically significant negative correlation between G and passage was found in four of our five cultures studied. Phalloidin-stained SMC from higher passages exhibited lower mean signal intensity per cell (confocal microscopy) and quantitative western blotting analysis showed a decrease in collagen I content throughout passages. We concluded that vascular SMC progressively lose their stiffness with serial culture passaging. Thus, limiting the number of passages is essential for any experiment measuring viscoelastic properties of SMC in culture.
Resumo:
The arterial wall contains MSCs with mesengenic and angiogenic abilities. These multipotent precursors have been isolated from variously-sized human adult segments, belying the notion that vessel wall is a relatively quiescent tissue. Recently, our group identified in normal human arteries a vasculogenic niche and subsequently isolated and characterized resident MSCs (VW-MSCs) with angiogenic ability and multilineage potential. To prove that VW-MSCs are involved in normal and pathological vascular remodeling, we used a long-term organ culture system; this method was of critical importance to follow spontaneous 3-D vascular remodeling without any influence of blood cells. Next we tried to identify and localize in situ the VW-MSCs and to understand their role in the vascular remodeling in failed arterial homografts. Subsequently, we isolated this cell population and tested in vitro their multilineage differentiation potential through immunohistochemical, immunofluorescence, RT-PCR and ultrastructural analysis. From 25-30cm2 of each vascular wall homograft sample, we isolated a cell population with MSCs properties; these cells expressed MSC lineage molecules (CD90, CD44, CD105, CD29, CD73), stemness (Notch-1, Oct-4, Sca-1, Stro-1) and pericyte markers (NG2) whilst were negative for hematopoietic and endothelial markers (CD34, CD133, CD45, KDR, CD146, CD31 and vWF). MSCs derived from failed homografts (H-MSCs) exhibited adipogenic, osteogenic and chondrogenic potential but scarce propensity to angiogenic and leiomyogenic differentiation. The present study demonstrates that failed homografts contain MSCs with morphological, phenotypic and functional MSCs properties; H-MSCs are long-lived in culture, highly proliferating and endowed with prompt ability to differentiate into adipocytes, osteocytes and chondrocytes; compared with VW-MSCs from normal arteries, H-MSCs show a failure in angiogenic and leiomyogenic differentiation. A switch in MSCs plasticity could be the basis of pathological remodeling and contribute to aneurysmal failure of arterial homografts. The study of VW-MSCs in a pathological setting indicate that additional mechanisms are involved in vascular diseases; their knowledge will be useful for opening new therapeutic options in cardiovascular diseases.
Resumo:
Recently, the existence of a capillary-rich vasculogenic zone has been identified in adult human arteries between the tunica media and adventitia; in this area it has been postulated that Mesenchymal Stem Cells (MSCs) may be present amidst the endothelial progenitors and hematopoietic stem cells. This hypothesis is supported by several studies claiming to have found the in vivo reservoir of MSCs in post-natal vessels and by the presence of ectopic tissues in the pathological artery wall. We demonstrated that the existence of multipotent progenitors is not restricted to microvasculature; vascular wall resident MSCs (VW-MSCs) have been isolated from multidistrict human large and middle size vessels (aortic arch, thoracic aorta and femoral artery) harvested from healthy multiorgan donors. Each VW-MSC population shows characteristics of embryonic-like stem cells and exhibits angiogenic, adipogenic, chondrogenic and leiomyogenic potential but less propensity to osteogenic ifferentiation. Human vascular progenitor cells are also able to engraft, differentiate into mature endothelial cells and support muscle function when injected in a murine model of hind limb ischemia. Conversely, VW-MSCs isolated from calcified femoral arteries display a good response to osteogenic commitment letting us to suppose that VW-MSCs could have an important role in the onset of vascular pathologies such as Mönckeberg sclerosis. Taken together these results show two opposite roles of vascular progenitor cells and underline the importance of establishing their in vivo pathological and regenerative potential to better understand pathological events and promote different therapeutic strategies in cardiovascular research and clinical applications.
Resumo:
The human airway epithelium is a pseudostratified heterogenous layer comprised of cili-ated, secretory, intermediate and basal cells. As the stem/progenitor population of the airway epi-thelium, airway basal cells differentiate into ciliated and secretory cells to replenish the airway epithelium during physiological turnover and repair. Transcriptome analysis of airway basal cells revealed high expression of vascular endothelial growth factor A (VEGFA), a gene not typically associated with the function of this cell type. Using cultures of primary human airway basal cells, we demonstrate that basal cells express all of the 3 major isoforms of VEGFA (121, 165 and 189) but lack functional expression of the classical VEGFA receptors VEGFR1 and VEGFR2. The VEGFA is actively secreted by basal cells and while it appears to have no direct autocrine function on basal cell growth and proliferation, it functions in a paracrine manner to activate MAPK signaling cascades in endothelium via VEGFR2 dependent signaling pathways. Using a cytokine- and serum-free co-culture system of primary human airway basal cells and human endothelial cells revealed that basal cell secreted VEGFA activated endothelium to ex-press mediators that, in turn, stimulate and support basal cell proliferation and growth. These data demonstrate novel VEGFA mediated cross-talk between airway basal cells and endothe-lium, the purpose of which is to modulate endothelial activation and in turn stimulate and sustain basal cell growth.
Resumo:
Background. Ageing and inflammation are critical for the occurrence of aortic diseases. Extensive inflammatory infiltrate and excessive ECM proteloysis, mediated by MMPs, are typical features of abdominal aortic aneurysm (AAA). Mesenchymal Stromal Cells (MSCs) have been detected within the vascular wall and represent attractive candidates for regenerative medicine, in virtue of mesodermal lineage differentiation and immunomodulatory activity. Meanwhile, many works have underlined an impaired MSC behaviour under pathological conditions. This study was aimed to define a potential role of vascular MSCs to AAA development. Methods. Aortic tissues were collected from AAA patients and healthy donors. Our analysis was organized on three levels: 1) histology of AAA wall; 2) detection of MSCs and evaluation of MMP-9 expression on AAA tissue; 3) MSC isolation from AAA wall and characterization for mesenchymal/stemness markers, MMP-2, MMP-9, TIMP-1, TIMP-2 and EMMPRIN. AAA-MSCs were tested for immunomodulation, when cultured together with activated peripheral blood mononuclear cells (PBMCs). In addition, a co-colture of both healthy and AAA MSCs was assessed and afterwards MMP-2/9 mRNA levels were analyzed. Results. AAA-MSCs showed basic mesenchymal properties: fibroblastic shape, MSC antigens, stemness genes. MMP-9 mRNA, protein and enzymatic activity were significantly increased in AAA-MSCs. Moreover, AAA-MSCs displayed a weak immunosuppressive activity, as shown by PBMC ongoing along cell cycle. MMP-9 was shown to be modulated at the transcriptional level through the direct contact as well as the paracrine action of healthy MSCs. Discussion. Vascular injury did not affect the MSC basic phenotype, but altered their function, a increased MMP-9 expression and ineffective immunmodulation. These data suggest that vascular MSCs can contribute to aortic disease. In this view, the study of key processes to restore MSC immunomodulation could be relevant to find a pharmacological approach for monitoring the aneurysm progression.