959 resultados para university third mission
Resumo:
In this paper, a thermoeconomic analysis method based on the First and the Second Law of Thermodynamics and applied to analyse the replacement of an equipment of a cogeneration system is presented. The cogeneration system consists of a gas turbine linked to a waste boiler. The electrical demand of the campus is approximately 9 MW but the cogen system generates approximately one third of the university requirement as well as 1.764 kg/s of saturated steam (at 0.861 MPa), approximately, from a single fuel source. The energy-economic study showed that the best system, based on pay-back period and based on the maximum savings (in 10 years), was the system that used the gas turbine M1T-06 of Kawasaki Heavy Industries and the system that used the gas turbine CCS7 of Hitachi Zosen, respectively. The exergy-economic study showed that the best system, which has the lowest EMC, was the system that used the gas turbine ASE50 of Allied Signal. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
University College proudly presents the third Undergraduate Scholarship at Winthrop University Book of Abstracts, which chronicles the scholarly accomplishments of students throughout all five academic colleges in the university: College of Arts and Sciences (CAS), College of Business Administration (CBA), College of Education (COE), the College of Visual and Performing Arts (CVPA) and University College (UC). The book also highlights the students who have completed Honors Theses, applied for Nationally Competitive Awards, and were selected as McNair or WISE Scholars.
Resumo:
Good afternoon. It is a real pleasure for me to be here with you today, and I thank you for inviting me. I also, as I begin my remarks today, want to thank each of you for the work you do, everyday, to help make this a better university. Please know that work is both valued and appreciated. I'd like to talk with you about a couple of topics today, and after that I'm going to open the floor for questions and comments. I look forward to hearing what you have to say, too. The first topic I'm going to talk about in the next few minutes is our land grant mission. People who know me at all can tell you I am passionate about land grants because I believe being part of a land grant university and helping to advance the land grant mission is one of the great privileges and responsibilities of our times.
Resumo:
Drawing on longitudinal data from the Early Childhood Longitudinal Study, Kindergarten Class of 1998–1999, this study used IRT modeling to operationalize a measure of parental educational investments based on Lareau’s notion of concerted cultivation. It used multilevel piecewise growth models regressing children’s math and reading achievement from entry into kindergarten through the third grade on concerted cultivation and family context variables. The results indicate that educational investments are an important mediator of socioeconomic and racial/ethnic disparities, completely explaining the black-white reading gap at kindergarten entry and consistently explaining 20 percent to 60 percent and 30 percent to 50 percent of the black-white and Hispanic-white disparities in the growth parameters, respectively, and approximately 20 percent of the socioeconomic gradients. Notably, concerted cultivation played a more significant role in explaining racial/ethnic gaps in achievement than expected from Lareau’s discussion, which suggests that after socioeconomic background is controlled, concerted cultivation should not be implicated in racial/ethnic disparities in learning.
Resumo:
To open this Third Vertebrate Pest Conference is a real privilege. It is a pleasure to welcome all of you in attendance, and I know there are others who would like to be meeting with us, but, for one reason or another cannot be. However, we can serve them by taking back the results of discussion and by making available the printed transactions of what is said here. It has been the interest and demand for the proceedings of the two previous conferen- ces which, along with personal contacts many of you have with the sponsoring committee, have gauged the need for continuing these meetings. The National Pest Control Association officers who printed the 1962 proceedings still are supplying copies of that conference. Two reprintings of the 1964 conference have been necessary and repeat orders from several universities indicate that those proceedings have become textbooks for special classes. When Dr. Howard mentioned in opening the first Conference in 1962 that publication of those papers would make a valuable handbook of animal control, he was prophetic, indeed. We are pleased that this has happened, but not surprised, since to many of us in this specialized field, the conferences have provided a unique opportunity to meet colleagues with similar interests, to exchange information on control techniques and to be informed by research workers of problem solving investigations as well as to hear of promising basic research. The development of research is a two-way street and we think these conferences also identify areas of inadequate knowledge, thereby stimulating needed research. We have represented here a number of types of specialists—animal ecologists, public health and transmissible disease experts, control methods specialists, public agency administration and enforcement staffs, agricultural extension people, manufacturing and sale industry representatives, commercial pest control operators, and others—and in addition to improving communications among these professional groups an equally important purpose of these conferences is to improve understanding between them and the general public. Within the term general public are many individuals and also organizations dedicated to appreciation and protection of certain animal forms or animal life in general. Proper concepts of vertebrate pest control do not conflict with such views. It is worth repeating for the record the definition of "vertebrate pest" which has been stated at our previous conferences. "A vertebrate pest is any native or introduced, wild or feral, non-human spe- cies of vertebrate animal that is currently troublesome locally or over a wide area to one or more persons either by being a general nuisance, a health hazard or by destroying food or natural resources. In other words, vertebrate pest status is not an inherent quality or fixed classification but is a circumstantial relationship to man's interests." I believe progress has been made in reducing the misunderstanding and emotion with which vertebrate pest control was formerly treated whenever a necessity for control was stated. If this is true, I likewise believe it is deserved, because control methods and programs have progressed. Control no longer refers only to population reductions by lethal means. We have learned something of alternate control approaches and the necessity for studying the total environment; where reduction of pest animal numbers is the required solution to a problem situation we have a wider choice of more selective, safe and efficient materials. Although increased attention has been given to control methods, research when we take a close look at the severity of animal damage to so many facets of our economy, particularly to agricultural production and public health, we realize it still is pitifully small and slow. The tremendous acceleration of the world's food and health requirements seems to demand expediting vertebrate pest control to effectively neutralize the enormous impact of animal damage to vital resources. The efforts we are making here at problem delineation, idea communication and exchange of methodology could well serve as both nucleus and rough model for a broader application elsewhere. I know we all hope this Third Conference will advance these general objectives, and I think there is no doubt of its value in increasing our own scope of information.
Resumo:
All Latin students eventually have a problem with qui. To solve it, they need a third qui in their quiver. The problem shows up when they advance into third year, transitioning from Caesar to Roman Comedy, or to the poets. The familiar “who” often leads to nonsense, and they are at a loss. There are three qui’s: the relative pronoun, the interrogative adjective, and the old ablative instrumental, e.g. 1. qui dixit, who spoke 2. qui vir, which man 3. illud qui, that thing by means of which It is the third that causes problems. So this article addresses the question “how do you tell qui from qui ?” There are six main ways to tell when to say “how,” “whereby,” or “the way” for qui: 1. The whereby/how qui is usually interrogative. 2. It is often marked further by being paired with a following quia: qui? quia “How . . . ? Because . . .” 3. The most frequent associated idea is of knowing, with a form of scire or gnoscere: qui scis, qui noveris? “How do you know?” 4. Qui followed immediately by an adverb or comparative is whereby/how/the way: qui minus quam . . . “How less than . . .” 5. The obvious noun antecedent is not a person, but a tool: machinas qui, “tools to __ with” (“with which to__”). 6. If the context is of giving or seeking, qui is instrumental, “how,” “a way,” “the means, “ e.g. da mi qui comparem “Give me the means to buy . . .” There is no antecedent.
"Mission for the 21st Century: From Inclusion to Influence, From Diversity to Decision-Making Power"
Resumo:
We report the discovery by the CoRoT space mission of a new giant planet, CoRoT-20b. The planet has a mass of 4.24 +/- 0.23 M-Jup and a radius of 0.84 +/- 0.04 R-Jup. With a mean density of 8.87 +/- 1.10 g cm(-3), it is among the most compact planets known so far. Evolutionary models for the planet suggest a mass of heavy elements of the order of 800 M-circle plus if embedded in a central core, requiring a revision either of the planet formation models or both planet evolution and structure models. We note however that smaller amounts of heavy elements are expected by more realistic models in which they are mixed throughout the envelope. The planet orbits a G-type star with an orbital period of 9.24 days and an eccentricity of 0.56. The star's projected rotational velocity is v sin i = 4.5 +/- 1.0 km s(-1), corresponding to a spin period of 11.5 +/- 3.1 days if its axis of rotation is perpendicular to the orbital plane. In the framework of Darwinian theories and neglecting stellar magnetic breaking, we calculate the tidal evolution of the system and show that CoRoT-20b is presently one of the very few Darwin-stable planets that is evolving toward a triple synchronous state with equality of the orbital, planetary and stellar spin periods.
Resumo:
[ES] La Universidad de Rutgers y la Universidad de Las Palmas de Gran Canaria, a través de su Estación de Oceanografía Espacial SEAS Canarias que dirige el Dr. Antonio González Ramos, han colaborado en cinco proyectos de recogida de datos oceánicos desarrollados en el 2008 y el 2013. Estos proyectos son considerados hitos científicos al usar minisubmarinos no tripulados que han batido récords de distancia y tiempo en el agua nunca antes conseguidos. El Dr. González Ramos (Facultad de Ciencias del Mar) recibió el premio en una gala en esta universidad norteamericana, celebrada con motivo del 20 aniversario de su Instituto de Ciencias Marinas y Costeras (RU COOL). González Ramos desarrolló la herramienta Pinzon4D, un sistema de predicción que permite mostrar predicciones de las corrientes oceánicas de 0 a 1000 metros para el mismo día, así como una predicción de tres días, a través de la aplicación Google Earth. La novedad y utilidad de esta herramienta han hecho que se convierta en el protocolo del pilotaje para las dos misiones globales actuales. La herramienta Pinzon-4D se presentará como parte de la Challenger Mission en la próxima sesión plenaria de la Comisión Oceanográfica Internacional (UNESCO). El equipo de trabajo considera que el éxito de este tipo de proyectos radica en tres pilares: la innovación tecnológica, la cooperación internacional y la visibilidad de la información
Resumo:
This report presents the proceedings of the Biochemical Engineering Symposium held at Kansas State University, April 28, 1973. Since a number of the contributions will be published in detail elsewhere, only brief summaries of each contribution are included here. Requests for additional information on projects conducted at The University of Nebraska should be directed to Dr. Peter J. Reilly, and those at Kansas State University to the editors. ContentsKenneth J. Jacobson, Andrew H.C. Chan, and Raymond C. Eliason, "Properties and Utilization of Small Particulates in Cattle Manure" Cady R. Engler and James S. Yohn, "Protein from Manure" Robert J. Williams, "Kinetics of Sucrose Inversion Using Invertase Immobilized on Hollow Fibers of Cellulose Acetate" David F. Aldis and Thomas A. Carlisle, "Study of a Triiodide-Resin Complex Disinfection System" John C. Heydweiller, "Modeling and Analysis of Symbiotic Growth" Kenneth J. Jacobson, "Synchronized Growth of the Blue Green Alga Microcystis aeruginosa" Clarence C. Y. Ron arui Lincoln L. S. Yang, "Computer Modeling of the Reductive Pentose Phosphate Cycle" Ming-ching T. Kuo, "Application of a Parallel Biochemical Oxidation Kinetic Model to the Design of an Activated Sludge System Including a Primary Clarifier" Prakash N. Mishra, "Optimal Synthesis of Water Renovation Systems"
Resumo:
The COSMIC-2 mission is a follow-on mission of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) with an upgraded payload for improved radio occultation (RO) applications. The objective of this paper is to develop a near-real-time (NRT) orbit determination system, called NRT National Chiao Tung University (NCTU) system, to support COSMIC-2 in atmospheric applications and verify the orbit product of COSMIC. The system is capable of automatic determinations of the NRT GPS clocks and LEO orbit and clock. To assess the NRT (NCTU) system, we use eight days of COSMIC data (March 24-31, 2011), which contain a total of 331 GPS observation sessions and 12 393 RO observable files. The parallel scheduling for independent GPS and LEO estimations and automatic time matching improves the computational efficiency by 64% compared to the sequential scheduling. Orbit difference analyses suggest a 10-cm accuracy for the COSMIC orbits from the NRT (NCTU) system, and it is consistent as the NRT University Corporation for Atmospheric Research (URCA) system. The mean velocity accuracy from the NRT orbits of COSMIC is 0.168 mm/s, corresponding to an error of about 0.051 μrad in the bending angle. The rms differences in the NRT COSMIC clock and in GPS clocks between the NRT (NCTU) and the postprocessing products are 3.742 and 1.427 ns. The GPS clocks determined from a partial ground GPS network [from NRT (NCTU)] and a full one [from NRT (UCAR)] result in mean rms frequency stabilities of 6.1E-12 and 2.7E-12, respectively, corresponding to range fluctuations of 5.5 and 2.4 cm and bending angle errors of 3.75 and 1.66 μrad .
Resumo:
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) was the first Earth explorer core mission of the European Space Agency. It was launched on March 17, 2009 into a Sun-synchronous dusk-dawn orbit and re-entered into the Earth’s atmosphere on November 11, 2013. The satellite altitude was between 255 and 225 km for the measurement phases. The European GOCE Gravity consortium is responsible for the Level 1b to Level 2 data processing in the frame of the GOCE High-level processing facility (HPF). The Precise Science Orbit (PSO) is one Level 2 product, which was produced under the responsibility of the Astronomical Institute of the University of Bern within the HPF. This PSO product has been continuously delivered during the entire mission. Regular checks guaranteed a high consistency and quality of the orbits. A correlation between solar activity, GPS data availability and quality of the orbits was found. The accuracy of the kinematic orbit primarily suffers from this. Improvements in modeling the range corrections at the retro-reflector array for the SLR measurements were made and implemented in the independent SLR validation for the GOCE PSO products. The satellite laser ranging (SLR) validation finally states an orbit accuracy of 2.42 cm for the kinematic and 1.84 cm for the reduced-dynamic orbits over the entire mission. The common-mode accelerations from the GOCE gradiometer were not used for the official PSO product, but in addition to the operational HPF work a study was performed to investigate to which extent common-mode accelerations improve the reduced-dynamic orbit determination results. The accelerometer data may be used to derive realistic constraints for the empirical accelerations estimated for the reduced-dynamic orbit determination, which already improves the orbit quality. On top of that the accelerometer data may further improve the orbit quality if realistic constraints and state-of-the-art background models such as gravity field and ocean tide models are used for the reduced-dynamic orbit determination.
Resumo:
Navigation of deep space probes is most commonly operated using the spacecraft Doppler tracking technique. Orbital parameters are determined from a series of repeated measurements of the frequency shift of a microwave carrier over a given integration time. Currently, both ESA and NASA operate antennas at several sites around the world to ensure the tracking of deep space probes. Just a small number of software packages are nowadays used to process Doppler observations. The Astronomical Institute of the University of Bern (AIUB) has recently started the development of Doppler data processing capabilities within the Bernese GNSS Software. This software has been extensively used for Precise Orbit Determination of Earth orbiting satellites using GPS data collected by on-board receivers and for subsequent determination of the Earth gravity field. In this paper, we present the currently achieved status of the Doppler data modeling and orbit determination capabilities in the Bernese GNSS Software using GRAIL data. In particular we will focus on the implemented orbit determination procedure used for the combined analysis of Doppler and intersatellite Ka-band data. We show that even at this earlier stage of the development we can achieve an accuracy of few mHz on two-way S-band Doppler observation and of 2 µm/s on KBRR data from the GRAIL primary mission phase.