986 resultados para ultra-wideband slot antenna
Resumo:
Simple design formulas for designing ultra wideband (UWB) antennas in the form of complementary planar monopoles are described and their validity is tested using full electromagnetic wave simulations and measurements. Assuming dielectric substrate with relative permittivity of 10.2, the designed antennas feature a small size of 13 mmtimes26 mm. They exhibit a 10 dB return loss bandwidth from 3 to more than 15 GHz accompanied by near omnidirectional characteristics and good radiation efficiency throughout this band
Resumo:
This paper discusses how to design a Radial Line Slot Antenna (RLSA) whose waveguide is filled with high loss dielectric materials. We introduce a new design for the aperture slot coupling synthesis to restrain the dielectric losses and improve the antenna gain. Based on a newly defined slot coupling, a number of RLSAs with different sizes and loss factors are analyzed and their performances are predicted. Theoretical calculations suggest that the gain is sensitive to the material losses in the radial lines. The gain enhancement by using the new coupling formula is notable for larger antenna size and higher loss factor of the dielectric material. Three prototype RLSAs are designed and fabricated at 60GHz following different slot coupling syntheses, and their measured performances consolidate our theory.
Resumo:
Summary form only given. Geometric simplicity, efficiency and polarization purity make slot antenna arrays ideal solutions for many radar, communications and navigation applications, especially when high power, light weight and limited scan volume are priorities. Resonant arrays of longitudinal slots have a slot spacing of one-half guide wavelength at the design frequency, so that the slots are located at the standing wave peaks. Planar arrays are implemented using a number of rectangular waveguides (branch line guides), arranged side-by-side, while waveguides main lines located behind and at right angles to the branch lines excite the radiating waveguides via centered-inclined coupling slots. Planar slotted waveguide arrays radiate broadside beams and all radiators are designed to be in phase.
Resumo:
Observing the working procedure of construction workers is an effective means of maintaining the safety performance of a construction project. It is also difficult to achieve due to a high worker-to-safety-officer ratio. There is an imminent need for the development of a tool to assist in the real-time monitoring of workers, in order to reduce the number of construction accidents. The development and application of a real time locating system (RTLS) based on the Chirp Spread Spectrum (CSS) technique is described in this paper for tracking the real-time position of workers on construction sites. Experiments and tests were carried out both on- and off-site to verify the accuracy of static and dynamic targets by the system, indicating an average error of within one metre. Experiments were also carried out to verify the ability of the system to identify workers’ unsafe behaviours. Wireless data transfer was used to simplify the deployment of the system. The system was deployed in a public residential construction project and proved to be quick and simple to use. The cost of the developed system is also reported to be reasonable (around 1800USD) in this study and is much cheaper than the cost of other RTLS. In addition, the CCS technique is shown to provide an economical solution with reasonable accuracy compared with other positioning systems, such as ultra wideband. The study verifies the potential of the CCS technique to provide an effective and economical aid in the improvement of safety management in the construction industry.
Resumo:
The radiation resistance of off-set series slots has been calculated for microstrip lines using the method proposed by Breithaupt for strip lines. A suitable transformation is made to allow for the difference in structure. Curves relating the slot resistance to the microstrip length, width and off-set distance have been obtained. Microstrip slot antenna arrays are becoming important in applications where size and weight are of significance. The radiation resistance is a very significant parameter is the design of such arrays. Oliner first calculated the radiation conductance of centered series slots in strip transmission lines and that analysis was extended by Breithaupt to the off-set series slots in stripline. The radiation resistance of off-set series slots in microstrip lines is calculated in this paper and data are obtained for different slot lengths, slot widths and off-set values. An example of the use of these data in array antenna design in shown.
Resumo:
In this paper we present the various design issues related to CRLH-Transmission lines for the generation of short duration Ultra-Wideband chirped-pulse. The major parameters of the CRLH Transmission lines affecting the BandWidth are discussed and methods to increase BandWidth are also suggested. Also presented is the role of components of CRLH Transmission lines in determining the chirp duration. The techniques of controlling the chirp duration by regulating these components are also discussed. Simulations results are also included.
Resumo:
In this paper we present an approach to build a prototype. model of a first-responder localization system intended for disaster relief operations. This system is useful to monitor and track the positions of the first-responders in an indoor environment, where GPS is not available. Each member of the first responder team is equipped with two zero-velocity-update-aided inertial navigation systems, one on each foot, a camera mounted on a helmet, and a processing platform strapped around the waist of the first responder, which fuses the data from the different sensors. The fusion algorithm runs real-time on the processing platform. The video is also processed using the DSP core of the computing machine. The processed data consisting of position, velocity, heading information along with video streams is transmitted to the command and control system via a local infrastructure WiFi network. A centralized cooperative localization algorithm, utilizing the information from Ultra Wideband based inter-agent ranging devices combined with the position estimates and uncertainties of each first responder, has also been implemented.
Resumo:
Among the branches of astronomy, radio astronomy is unique in that it spans the largest portion of the electromagnetic spectrum, e.g., from about 10 MHz to 300 GHz. On the other hand, due to scientific priorities as well as technological limitations, radio astronomy receivers have traditionally covered only about an octave bandwidth. This approach of "one specialized receiver for one primary science goal" is, however, not only becoming too expensive for next-generation radio telescopes comprising thousands of small antennas, but also is inadequate to answer some of the scientific questions of today which require simultaneous coverage of very large bandwidths.
This thesis presents significant improvements on the state of the art of two key receiver components in pursuit of decade-bandwidth radio astronomy: 1) reflector feed antennas; 2) low-noise amplifiers on compound-semiconductor technologies. The first part of this thesis introduces the quadruple-ridged flared horn, a flexible, dual linear-polarization reflector feed antenna that achieves 5:1-7:1 frequency bandwidths while maintaining near-constant beamwidth. The horn is unique in that it is the only wideband feed antenna suitable for radio astronomy that: 1) can be designed to have nominal 10 dB beamwidth between 30 and 150 degrees; 2) requires one single-ended 50 Ohm low-noise amplifier per polarization. Design, analysis, and measurements of several quad-ridged horns are presented to demonstrate its feasibility and flexibility.
The second part of the thesis focuses on modeling and measurements of discrete high-electron mobility transistors (HEMTs) and their applications in wideband, extremely low-noise amplifiers. The transistors and microwave monolithic integrated circuit low-noise amplifiers described herein have been fabricated on two state-of-the-art HEMT processes: 1) 35 nm indium phosphide; 2) 70 nm gallium arsenide. DC and microwave performance of transistors from both processes at room and cryogenic temperatures are included, as well as first-reported measurements of detailed noise characterization of the sub-micron HEMTs at both temperatures. Design and measurements of two low-noise amplifiers covering 1--20 and 8—50 GHz fabricated on both processes are also provided, which show that the 1--20 GHz amplifier improves the state of the art in cryogenic noise and bandwidth, while the 8--50 GHz amplifier achieves noise performance only slightly worse than the best published results but does so with nearly a decade bandwidth.
Resumo:
This thesis describes the development of low-noise heterodyne receivers at THz frequencies for submillimeter astronomy using Nb-based superconductor-insulator-superconductor (SIS) tunneling junctions. The mixers utilize a quasi-optical configuration which consists of a planar twin-slot antenna and antisymmetrically-fed two-junctions on an antireflection-coated silicon hyperhemispherical lens. On-chip integrated tuning circuits, in the form of microstrip lines, are used to obtain maximum coupling efficiency in the designed frequency band. To reduce the rf losses in the integrated tuning circuits above the superconducting Nb gap frequency (~ 700 GHz), normal-metal Al is used to replace Nb as the tuning circuits.
To account the rf losses in the micros trip lines, we calculated the surface impedance of the AI films using the nonlocal anomalous skin effect for finite thickness films. Nb films were calculated using the Mattis-Bardeen theory in the extreme anomalous limit. Our calculations show that the losses of the Al and Nb microstrip lines are about equal at 830 GHz. For Al-wiring and Nb-wiring mixers both optimized at 1050 GHz, the RF coupling efficiency of Al-wiring mixer is higher than that of Nb-wiring one by almost 50%. We have designed both Nb-wiring and Al-wiring mixers below and above the gap frequency.
A Fourier transform spectrometer (FTS) has been constructed especially for the study of the frequency response of SIS receivers. This FTS features large aperture size (10 inch) and high frequency resolution (114 MHz). The FTS spectra, obtained using the SIS receivers as direct detectors on the FTS, agree quite well with our theoretical simulations. We have also, for the first time, measured the FTS heterodyne response of an SIS mixer at sufficiently high resolution to resolve the LO and the sidebands. Heterodyne measurements of our SIS receivers with Nb-wiring or Al-wiring have yielded results which arc among the best reported to date for broadband heterodyne receivers. The Nb-wiring mixers, covering 400 - 850 GHz band with four separate fixed-tuned mixers, have uncorrected DSB receiver noise temperature around 5hv/kb to 700 GHz, and better than 540 K at 808 GHz. An Al-wiring mixer designed for 1050 GHz band has an uncorrected DSB receiver noise temperature 840 K at 1042 GHz and 2.5 K bath temperature. Mixer performance analysis shows that Nb junctions can work well up to twice the gap frequency and the major cause of loss above the gap frequency is the rf losses in the microstrip tuning structures. Further advances in THz SIS mixers may be possible using circuits fabricated with higher-gap superconductors such as NbN. However, this will require high-quality films with low RF surface resistance at THz frequencies.
Resumo:
We study the behavior of channel capacity when a one-bit quantizer is employed at the output of the discrete-time average-power-limited Gaussian channel. We focus on the low signal-to-noise ratio regime, where communication at very low spectral efficiencies takes place, as in Spread-Spectrum and Ultra-Wideband communications. It is well known that, in this regime, a symmetric one-bit quantizer reduces capacity by 2/π, which translates to a power loss of approximately two decibels. Here we show that if an asymmetric one-bit quantizer is employed, and if asymmetric signal constellations are used, then these two decibels can be recovered in full. © 2011 IEEE.
Resumo:
On-site tracking in open construction sites is often difficult because of the large amounts of items that are present and need to be tracked. Additionally, the amounts of occlusions/obstructions present create a highly complex tracking environment. Existing tracking methods are based mainly on Radio Frequency technologies, including Global Positioning Systems (GPS), Radio Frequency Identification (RFID), Bluetooth and Wireless Fidelity (Wi-Fi, Ultra-Wideband, etc). These methods require considerable amounts of pre-processing time since they need to manually deploy tags and keep record of the items they are placed on. In construction sites with numerous entities, tags installation, maintenance and decommissioning become an issue since it increases the cost and time needed to implement these tracking methods. This paper presents a novel method for open site tracking with construction cameras based on machine vision. According to this method, video feed is collected from on site video cameras, and the user selects the entity he wishes to track. The entity is tracked in each video using 2D vision tracking. Epipolar geometry is then used to calculate the depth of the marked area to provide the 3D location of the entity. This method addresses the limitations of radio frequency methods by being unobtrusive and using inexpensive, and easy to deploy equipment. The method has been implemented in a C++ prototype and preliminary results indicate its effectiveness
Resumo:
An ultra-wide-band frequency response measurement system for optoelectronic devices has been established using the optical heterodyne method utilizing a tunable laser and a wavelenath-fixed distributed feedback laser. By controlling the laser diode cavity length, the beat frequency is swept from DC to hundreds GHz. An outstanding advantage is that this measurement system does not need any high-speed light modulation source and additional calibration. In this measurement, two types of different O/E receivers have been tested. and 3 dB bandwidths measured by this system were 14.4GHz and 40GHz, respectively. The comparisons between experimental data and that from manufacturer show that this method is accurate and easy to carry out.
Resumo:
A novel ultra-wideband electromagnetic pulse generating method based on the photoconductive semiconductor switches (PCSS) is presented. Gallium arsenide is used to develop the PCSS for an ultrashort electromagnetic pulse source. The pulse generated by such PCSS is within picosecond (ps) time scale, and can yield power pulse with an voltage over 10 kV. The experimental results show that the pulses are stable, with the peak-peak amplitude change of 6% and the time jitter within several picoseconds. The radiations of the PCSS triggered by the picosecond laser and fenitosecond laser pulse series illustrate that the electromagnetic pulses would have high repetition of more than 80 MHz and frequency bandwidth of DC-6 GHz. The radiations of "lock-on " mode of the PCSS are also analyzed here. (c) 2007 Wiley Periodicals, Inc.
Resumo:
A photoconductive semiconductor switch (PCSS) would work in a nonlinear mode under high biased electrical field. The experimental results of nonlinear critical state have shown that both the biased voltage and the laser energy may have working thresholds to turn on the nonlinear modes. The relation between the biased voltage (aid the laser energy is inverse ratio, i.e., higher biased field need lower laser energy for nonlinear mode, and vise versa. At the nonlinear critical point, the output of PCSS is unstable, as both the linear and nonlinear pulse may occur. As the laser energy and biased field increase, the PCSS would work in the nonlinear mode steadily. (C) 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51: 56-59 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOT 10.1002/mop.24001
Resumo:
Ultra Wide Band (UWB) transmission has recently been the object of considerable attention in the field of next generation location aware wireless sensor networks. This is due to its fine time resolution, energy efficient and robustness to interference in harsh environments. This paper presents a thorough applied examination of prototype IEEE 802.15.4a impulse UWB transceiver technology to quantify the effect of line of sight (LOS) and non line of sight (NLOS) ranging in real indoor and outdoor environments. Results included draw on an extensive array of experiments that fully characterize the 802.15.4a UWB transceiver technology, its reliability and ranging capabilities for the first time. A new two way (TW) ranging protocol is proposed. The goal of this work is to validate the technology as a dependable wireless communications mechanism for the subset of sensor network localization applications where reliability and precision positions are key concerns.