909 resultados para ultra high-power laser diode arrays


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe high-power planar waveguide laser which can achieve single-mode output from a multi-mode structure. The planar waveguide is constructed with incomplete self-imaging properties, by which the coupling loss of each guided mode can be discriminated. Thermal lens effects are evaluated for single-mode operation of such high-power diode-pumped solid-state lasers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To get high output power with good beam quality, a tapered section is introduced to large-mode-area (LMA) Yb-doped fiber laser. Output characteristics of the fiber laser without tapered section and with tapered section are compared experimentally. When the launched pump power is 119.1 W, 77.9 W with M-2 3.08 and 56.4 W with M-2 1.14 can be obtained, respectively. The corresponding slope efficiencies are 71.8% and 54.1%, respectively. Although output power of the tapered fiber laser has 30.6% penalty, brightness of it is as much as 5.28 times of the fiber laser without tapered section. Moreover, spectra of them are measured. It is found that tapered section makes lasing wavelength of the fiber laser shorter. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel Vb(3+)-Er-(3+) codoped phosphate glass for high power flashlamp pumping and high repetition rate laser at 1.54 mu m, designated EAT5-2, is developed. The weight-loss rate of is 1.3 x 10(-5) gcm(-2) h(-1) in boiling water, which is comparable to Kigre's QX-Er glass. Some spectroscopic parameters are analysed by Judd-Ofelt theory and McCumber theory The emission cross section is calculated to be 0.73 x 10(-20) cm(2). The thermo-mechanical properties of EAT5-2 are modified after an ion-exchange chemical strengthening process in a KNO3/NaNO3 molten salt bath. The thresholds for optical damage from the flashlamp pumping are tested on glass rods. A repetition rate of 15 Hz is achieved for chemically strengthened glass. The laser experimental results at. 1.54 mu m from flashlamp pumping are also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-quality neodymium doped GGG laser crystals have been grown by Czochralski (Cz) method. Results of Nd:GGG thin chip laser operating at 1.064 μm pumped by Ti:sapphire laser operating at 808 nm were reported. The slop efficiency was as high as 20%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tapered waveguides have been used for enhancing pulse powers in Q-switched AlGaAs and InGaAsP lasers. This paper reports on passively Q-switched pulses with 1.53 W peak power and 41-ps FWHM from an InGaAs/GasAs (970 nm) double-contact tapered semiconductor laser in a well defined single-lobed far-field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During high-power continuous wave (cw) Nd:yttritium-aluminum-garnet (YAG) laser welding a vapor plume is formed containing vaporized material ejected from the keyhole. The gas used as a plume control mechanism affects the plume shape but not its temperature, which has been found to be less than 3000 K, independent of the atmosphere and plume control gases. In this study high-power (up to 8 kW) cw Nd:YAG laser welding has been performed under He, Ar, and N2 gas atmospheres, extending the power range previously studied. The plume was found to contain very small evaporated particles of diameter less than 50 nm. Rayleigh and Mie scattering theories were used to calculate the attenuation coefficient of the incident laser power by these small particles. In addition the attenuation of a 9 W Nd:YAG probe laser beam, horizontally incident across the plume generated by the high-power Nd:YAG laser, was measured at various positions with respect to the beam-material interaction point. Up to 40% attenuation of the probe laser power was measured at positions corresponding to zones of high concentration of vapor plume, shown by high-speed video measurements. These zones interact with the high-power Nd:YAG laser beam path and, can result in significant laser power attenuation. © 2004 Laser Institute of America.