984 resultados para turbulence flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation into influence of obstructions on premixed flame propagation has been carried out in a semi-open tube. It is found that there exists flame acceleration and rising overpressure along the path of flame due to obstacles. According to the magnitude of flame speeds, the propagation of flame in the tube can be classified into three regimes: the quenching, the choking and the detonation regimes. In premixed flames near the flammability limits, the flame is observed first to accelerate and then to quench itself after propagating past a certain number of obstacles. In the choking regime, the maximum flame speeds are somewhat below the combustion product sound speeds, and insensitive to the blockage ratio. In the more sensitive mixtures, the transition to detonation (DDT) occurs when the equivalence ratio increases. The transition is not observed for the less sensitive mixtures. The dependence of overpressure on blockage ratio is not monotonous. Furthermore, a numerical study of flame acceleration and overpressure with the unsteady compressible flow model is performed, and the agreement between the simulation and measurements is good.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An algebraic unified second-order moment (AUSM) turbulence-chemistry model of char combustion is introduced in this paper, to calculate the effect of particle temperature fluctuation on char combustion. The AUSM model is used to simulate gas-particle flows, in coal combustion in a pulverized coal combustor, together with a full two-fluid model for reacting gas-particle flows and coal combustion, including the sub-models as the k-epsilon-k(p) two-phase turbulence niodel, the EBU-Arrhenius volatile and CO combustion model, and the six-flux radiation model. A new method for calculating particle mass flow rate is also used in this model to correct particle outflow rate and mass flow rate for inside sections, which can obey the principle of mass conservation for the particle phase and can also speed up the iterating convergence of the computation procedure effectively. The simulation results indicate that, the AUSM char combustion model is more preferable to the old char combustion model, since the later totally eliminate the influence of particle temperature fluctuation on char combustion rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Direct numerical simulation (DNS) of supercritical CO2 turbulent channel flow has been performed to investigate the heat transfer mechanism of supercritical fluid. In the present DNS, full compressible Navier-Stokes equations and Peng-Robison state equation are solved. Due to effects of the mean density variation in the wall normal direction, mean velocity in the cooling region becomes high compared with that in the heating region. The mean width between high-and low-speed streaks near the wall decreases in the cooling region, which means that turbulence in the cooling region is enhanced and lots of fine scale eddies are created due to the local high Reynolds number effects. From the turbulent kinetic energy budget, it is found that compressibility effects related with pressure fluctuation and dilatation of velocity fluctuation can be ignored even for supercritical condition. However, the effect of density fluctuation on turbulent kinetic energy cannot be ignored. In the cooling region, low kinematic viscosity and high thermal conductivity in the low speed streaks modify fine scale structure and turbulent transport of temperature, which results in high Nusselt number in the cooling condition of the supercritical CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oil/water two-phase flow inside T-junctions was numerically simulated with a 3-D two-fluid model, and the turbulence was described using the mixture k - epsilon model. Some experiments of oil/water flow inside a single T-junction were conducted in the laboratory. The results show that the separating performance of T-junction largely depends oil the inlet volumetric fraction and flow patterns. A reasonable agreement is reached between the numerical simulation and the experiments for both the oil fraction distribution and the separation efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The failure of hydraulic structures in many estuaries and coastal regions around the world has been attributed to sediment transport and local scour. The sediment incipience in homogenous turbulence generated by oscillating grid is studied in this paper. The turbulent flow is measured by particle tracer velocimetry (PTV) technique. The integral length scale and time scale of turbulence are obtained. The turbulent flow near the wall is measured by local optical magnification. The sediment incipience is described by static theory. The relationship of probability of sediment incipience and the turbulent kinetic energy were obtained experimentally and theoretically. The distribution of the turbulent kinetic energy near the wall is found to obey the power law and the turbulent energy is further identified as the dynamic mechanism of sediment incipience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characteristic burtsing behavior is observed in a driven, two-dimensional viscous flow, confined to a square domain and subject to no-slip boundaries. Passing a critical parameter value, an existing chaotic attractor undergoes a crisis, after which the flow initially enters a transient bursting regime. Bursting is caused by ejections from and return to a limited subdomain of the phase space, whereas the precrisis chaotic set forms the asymptotic attractor of the flow. For increasing values of the control parameter the length of the bursting regime increases progressively. Passing another critical parameter value, a second crisis leads to the appearance of a secondary type of bursting, of very large dynamical range. Within the bursting regime the flow then switches in irregular intervals from the primary to the secondary type of bursting. Peak enstrophy levels for both types of bursting are associated to the collapse of a primary vortex into a quadrupolar state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Reynolds-averaged Navier-Stokes equations for describing the turbulent flow in a straight square duct are formulated with two different turbulence models. The governing equations are then expanded as a multi-deck structure in a plane perpendicular to the streamwise direction, with each deck characterized by its dominant physical forces as commonly carried out in analytical work using triple-deck expansion. The resulting equations are numerically integrated using higher polynomial (H-P) finite element technique for each cross-sectional plane to be followed by finite difference representation in the streamwise direction until a fully developed state is reached. The computed results using the two different turbulence models show fair agreement with each other, and concur with the vast body of available experimental data. There is also general agreement between our results and the recent numerical works anisotropic k-epsilon turbulence model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presented in this paper is an experimental study on the characteristics of the turbulence produced by rising air bubbles in water. The measurements of turbulent velocities were made by using visualization technique of particle streak and computer image processing of the flow field. The turbulence features have been examined, showing that the rising bubble-produced turbulence can be approximately modeled by homogeneous turbulence as in the case of grid turbulence in air.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for measuring the density, temperature and velocity of N2 gas flow by laser induced biacetyl phosphorescence is proposed. The characteristics of the laser induced phosphorescence of biacetyl mixed with N2 are investigated both in static gas and in one-dimensional flow along a pipe with constant cross section. The theoretical and experimental investigations show that the temperature and density of N2 gas flow could be measured by observing the phosphorescence lifetime and initial intensity of biacetyl triplet (3Au) respectively. The velocity could be measured by observing the time-of-flight of the phosphorescent gas after pulsed laser excitation. The prospect of this method is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vorticity dynamics of two-dimensional turbulence are investigated analytically, applying the method of Qian (1983). The vorticity equation and its Fourier transform are presented; a set of modal parameters and a modal dynamic equation are derived; and the corresponding Liouville equation for the probability distribution in phase space is solved using a Langevin/Fokker-Planck approach to obtain integral equations for the enstrophy and for the dynamic damping coefficient eta. The equilibrium spectrum for inviscid flow is found to be a stationary solution of the enstrophy equation, and the inertial-range spectrum is determined by introducing a localization factor in the two integral equations and evaluating the localized versions numerically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initial-value problem of a forced Burgers equation is numerically solved by the Fourier expansion method. It is found that its solutions finally reach a steady state of 'laminar flow' which has no randomness and is stable to disturbances. Hence, strictly speaking, the so-called Burgers turbulence is not a turbulence. A new one-dimensional model is proposed to simulate the Navier-Stokes turbulence. A series of numerical experiments on this one-dimensional turbulence is made and is successful in obtaining Kolmogorov's (1941) k exp(-5/3) inertial-range spectrum. The (one-dimensional) Kolmogorov constant ranges from 0.5 to 0.65.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method is proposed to solve the closure problem of turbulence theory and to drive the Kolmogorov law in an Eulerian framework. Instead of using complex Fourier components of velocity field as modal parameters, a complete set of independent real parameters and dynamic equations are worked out to describe the dynamic states of a turbulence. Classical statistical mechanics is used to study the statistical behavior of the turbulence. An approximate stationary solution of the Liouville equation is obtained by a perturbation method based on a Langevin-Fokker-Planck (LFP) model. The dynamic damping coefficient eta of the LFP model is treated as an optimum control parameter to minimize the error of the perturbation solution; this leads to a convergent integral equation for eta to replace the divergent response equation of Kraichnan's direct-interaction (DI) approximation, thereby solving the closure problem without appealing to a Lagrangian formulation. The Kolmogorov constant Ko is evaluated numerically, obtaining Ko = 1.2, which is compatible with the experimental data given by Gibson and Schwartz, (1963).