945 resultados para tumor necrosis factor antibody
Resumo:
The signaling pathways that couple tumor necrosis factor-α (TNFα) receptors to functional, especially inflammatory, responses have remained elusive. We report here that TNFα induces endothelial cell activation, as measured by the expression of adhesion protein E-selectin and vascular adhesion molecule-1, through the sphingosine kinase (SKase) signaling pathway. Treatment of human umbilical vein endothelial cells with TNFα resulted in a rapid SKase activation and sphingosine 1-phosphate (S1P) generation. S1P, but not ceramide or sphingosine, was a potent dose-dependent stimulator of adhesion protein expression. S1P was able to mimic the effect of TNFα on endothelial cells leading to extracellular signal-regulated kinases and NF-κB activation, whereas ceramide or sphingosine was not. Furthermore, N,N-dimethylsphingosine, an inhibitor of SKase, profoundly inhibited TNFα-induced extracellular signal-regulated kinases and NF-κB activation and adhesion protein expression. Thus we demonstrate that the SKase pathway through the generation of S1P is critically involved in mediating TNFα-induced endothelial cell activation.
Resumo:
Tumor necrosis factor (TNF)-induced apoptosis is mediated by caspases, which are cysteine proteases related to interleukin 1β-converting enzyme. We report here that TNF-induced activation of caspases results in the cleavage and activation of cytosolic phospholipase A2 (cPLA2) and that activated cPLA2 contributes to apoptosis. Inhibition of caspases by expression of a cowpox virus-derived inhibitor, CrmA, or by a specific tetrapeptide inhibitor of CPP32/caspase-3, acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO), inhibited TNF-induced activation of cPLA2 and apoptosis. TNF-induced activation of cPLA2 was accompanied by a cleavage of the 100-kDa cPLA2 to a 70-kDa proteolytic fragment. This cleavage was inhibited by Ac-DEVD-CHO in a similar manner as that of poly(ADP)ribose polymerase, a known substrate of CPP32/caspase-3. Interestingly, specific inhibition of cPLA2 enzyme activity by arachidonyl trifluoromethylketone (AACOCF3) partially inhibited TNF-induced apoptosis without inhibition of caspase activity. Thus, our results suggest a novel caspase-dependent activation pathway for cPLA2 during apoptosis and identify cPLA2 as a mediator of TNF-induced cell death acting downstream of caspases.
Resumo:
The tumor necrosis factor-α (TNF-α) promoter was used to explore the molecular mechanisms of estradiol (E2)-dependent repression of gene transcription. E2 inhibited basal activity and abolished TNF-α activation of the TNF-α promoter. The E2-inhibitory element was mapped to the −125 to −82 region of the TNF-α promoter, known as the TNF-responsive element (TNF-RE). An AP-1-like site in the TNF-RE is essential for repression activity. Estrogen receptor (ER) β is more potent than ERα at repressing the −1044 TNF-α promoter and the TNF-RE upstream of the herpes simplex virus thymidine kinase promoter, but weaker at activating transcription through an estrogen response element. The activation function-2 (AF-2) surface in the ligand-binding domain is required for repression, because anti-estrogens and AF-2 mutations impair repression. The requirement of the AF-2 surface for repression is probably due to its capacity to recruit p160 coactivators or related coregulators, because overexpressing the coactivator glucocorticoid receptor interacting protein-1 enhances repression, whereas a glucocorticoid receptor interacting protein-1 mutant unable to interact with the AF-2 surface is ineffective. Furthermore, receptor interacting protein 140 prevents repression by ERβ, probably by interacting with the AF-2 surface and blocking the binding of endogenous coactivators. These studies demonstrate that E2-mediated repression requires the AF-2 surface and the participation of coactivators or other coregulatory proteins.
Resumo:
The Epstein–Barr virus latent membrane protein 1 (LMP1) is essential for the transformation of B lymphocytes into lymphoblastoid cell lines. Previous data are consistent with a model that LMP1 is a constitutively activated receptor that transduces signals for transformation through its carboxyl-terminal cytoplasmic tail. One transformation effector site (TES1), located within the membrane proximal 45 residues of the cytoplasmic tail, constitutively engages tumor necrosis factor receptor-associated factors. Signals from TES1 are sufficient to drive initial proliferation of infected resting B lymphocytes, but most lymphoblastoid cells infected with a virus that does not express the 155 residues beyond TES1 fail to grow as long-term cell lines. We now find that mutating two tyrosines to an isoleucine at the carboxyl end of the cytoplasmic tail cripples the ability of EBV to cause lymphoblastoid cell outgrowth, thereby marking a second transformation effector site, TES2. A yeast two-hybrid screen identified TES2 interacting proteins, including the tumor necrosis factor receptor-associated death domain protein (TRADD). TRADD was the only protein that interacted with wild-type TES2 and not with isoleucine-mutated TES2. TRADD associated with wild-type LMP1 but not with isoleucine-mutated LMP1 in mammalian cells, and TRADD constitutively associated with LMP1 in EBV-transformed cells. In transfection assays, TRADD and TES2 synergistically mediated high-level NF-κB activation. These results indicate that LMP1 appropriates TRADD to enable efficient long-term lymphoblastoid cell outgrowth. High-level NF-κB activation also appears to be a critical component of long-term outgrowth.
Resumo:
The mechanisms responsible for the induction of matrix-degrading proteases during lung injury are ill defined. Macrophage-derived mediators are believed to play a role in regulating synthesis and turnover of extracellular matrix at sites of inflammation. We find a localized increase in the expression of the rat interstitial collagenase (MMP-13; collagenase-3) gene from fibroblastic cells directly adjacent to macrophages within silicotic rat lung granulomas. Conditioned medium from macrophages isolated from silicotic rat lungs was found to induce rat lung fibroblast interstitial collagenase gene expression. Conditioned medium from primary rat lung macrophages or J774 monocytic cells activated by particulates in vitro also induced interstitial collagenase gene expression. Tumor necrosis factor-α (TNF-α) alone did not induce interstitial collagenase expression in rat lung fibroblasts but did in rat skin fibroblasts, revealing tissue specificity in the regulation of this gene. The activity of the conditioned medium was found to be dependent on the combined effects of TNF-α and 12-lipoxygenase-derived arachidonic acid metabolites. The fibroblast response to this conditioned medium was dependent on de novo protein synthesis and involved the induction of nuclear activator protein-1 activity. These data reveal a novel requirement for macrophage-derived 12-lipoxygenase metabolites in lung fibroblast MMP induction and provide a mechanism for the induction of resident cell MMP gene expression during inflammatory lung processes.
Resumo:
Signal transducers and activators of transcription (STAT)-induced STAT inhibitor-1 [SSI-1; also known as suppressor of cytokine signaling-1 (SOCS-1)] was identified as a negative feedback regulator of Janus kinase-STAT signaling. We previously generated mice lacking the SSI-1 gene (SSI-1 −/−) and showed that thymocytes and splenocytes in SSI-1 −/− mice underwent accelerated apoptosis. In this paper, we show that murine embryonic fibroblasts lacking the SSI-1 gene are more sensitive than their littermate controls to tumor necrosis factor-α (TNF-α)-induced cell death. In addition, L929 cells forced to express SSI-1 (L929/SSI-1), but not SSI-3 or SOCS-5, are resistant to TNF-α-induced cell death. Furthermore L929/SSI-1 cells treated with TNF-α sustain the activation of p38 mitogen-activated protein (MAP) kinase. In contrast, SSI-1 −/− murine embryonic fibroblasts treated with TNF-α show hardly any activation of p38 MAP kinase. These findings suggest that SSI-1 suppresses TNF-α-induced cell death, which is mediated by p38 MAP kinase signaling.
Resumo:
Previous studies have shown that proinflammatory cytokines, such as tumor necrosis factor (TNF), are expressed after acute hemodynamic overloading and myocardial ischemia/infarction. To define the role of TNF in the setting of ischemia/infarction, we performed a series of acute coronary artery occlusions in mice lacking one or both TNF receptors. Left ventricular infarct size was assessed at 24 h after acute coronary occlusion by triphenyltetrazolium chloride (TTC) staining in wild-type (both TNF receptors present) and mice lacking either the type 1 (TNFR1), type 2 (TNFR2), or both TNF receptors (TNFR1/TNFR2). Left ventricular infarct size as assessed by TTC staining was significantly greater (P < 0.005) in the TNFR1/TNFR2-deficient mice (77.2% ± 15.3%) when compared with either wild-type mice (46.8% ± 19.4%) or TNFR1-deficient (47.9% ± 10.6%) or TNFR2-deficient (41.6% ± 16.5%) mice. Examination of the extent of necrosis in wild-type and TNFR1/TNFR2-deficient mice by anti-myosin Ab staining demonstrated no significant difference between groups; however, the peak frequency and extent of apoptosis were accelerated in the TNFR1/TNFR2-deficient mice when compared with the wild-type mice. The increase in apoptosis in the TNFR1/TNFR2-deficient mice did not appear to be secondary to a selective up-regulation of the Fas ligand/receptor system in these mice. These data suggest that TNF signaling gives rise to one or more cytoprotective signals that prevent and/or delay the development of cardiac myocyte apoptosis after acute ischemic injury.
Resumo:
Apoptosis triggered by death receptors proceeds after defined signal-transduction pathways. Whether signaling at the receptor level is regulated by intracellular messengers is still unknown. We have investigated the role of two messengers, ceramide and nitric oxide (NO), on the apoptotic pathway activated in human monocytic U937 cells by tumor necrosis factor-α (TNF-α) working at its p55 receptor. Two transduction events, the receptor recruitment of the adapter protein, TRADD, and the activation of the initiator caspase, caspase 8, were investigated. When administered alone, neither of the messengers had any effect on these events. In combination with TNF-α, however, ceramide potentiated, whereas NO inhibited, TNF-α-induced TRADD recruitment and caspase 8 activity. The effect of NO, which was cGMP-dependent, was due to inhibition of the TNF-α-induced generation of ceramide. Our results identify a mechanism of regulation of a signal-transduction pathway activated by death receptors.
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent endogenous activator of the cell death pathway and functions by activating the cell surface death receptors 4 and 5 (DR4 and DR5). TRAIL is nontoxic in vivo and preferentially kills neoplastically transformed cells over normal cells by an undefined mechanism. Radiotherapy is a common treatment for breast cancer as well as many other cancers. Here we demonstrate that ionizing radiation can sensitize breast carcinoma cells to TRAIL-induced apoptosis. This synergistic effect is p53-dependent and may be the result of radiation-induced up-regulation of the TRAIL-receptor DR5. Importantly, TRAIL and ionizing radiation have a synergistic effect in the regression of established breast cancer xenografts. Changes in tumor cellularity and extracellular space were monitored in vivo by diffusion-weighted magnetic resonance imaging (diffusion MRI), a noninvasive technique to produce quantitative images of the apparent mobility of water within a tissue. Increased water mobility was observed in combined TRAIL- and radiation-treated tumors but not in tumors treated with TRAIL or radiation alone. Histological analysis confirmed the loss of cellularity and increased numbers of apoptotic cells in TRAIL- and radiation-treated tumors. Taken together, our results provide support for combining radiation with TRAIL to improve tumor eradication and suggest that efficacy of apoptosis-inducing cancer therapies may be monitored noninvasively, using diffusion MRI.
Resumo:
Two important cytokines mediating inflammation are tumor necrosis factor α (TNFα) and IL-1β, both of which require conversion to soluble forms by converting enzymes. The importance of TNFα-converting enzyme and IL-1β-converting enzyme in the production of circulating TNFα and IL-1β in response to systemic challenges has been demonstrated by the use of specific converting enzyme inhibitors. Many inflammatory responses, however, are not systemic but instead are localized. In these situations release and/or activation of cytokines may be different from that seen in response to a systemic stimulus, particularly because associations of various cell populations in these foci allows for the exposure of procytokines to the proteolytic enzymes produced by activated neutrophils, neutrophil elastase (NE), proteinase 3 (PR3), and cathepsin G (Cat G). To investigate the possibility of alternative processing of TNFα and/or IL-1β by neutrophil-derived proteinases, immunoreactive TNFα and IL-1β release from lipopolysaccharide-stimulated THP-1 cells was measured in the presence of activated human neutrophils. Under these conditions, TNFα and IL-1β release was augmented 2- to 5-fold. In the presence of a specific inhibitor of NE and PR3, enhanced release of both cytokines was largely abolished; however, in the presence of a NE and Cat G selective inhibitor, secretory leucocyte proteinase inhibitor, reduction of the enhanced release was minimal. This finding suggested that the augmented release was attributable to PR3 but not NE nor Cat G. Use of purified enzymes confirmed this conclusion. These results indicate that there may be alternative pathways for the production of these two proinflammatory cytokines, particularly in the context of local inflammatory processes.
Resumo:
Tumor necrosis factor-related, activation-induced cytokine (TRANCE), a tumor necrosis factor family member, mediates survival of dendritic cells in the immune system and is required for osteoclast differentiation and activation in the skeleton. We report the skeletal phenotype of TRANCE-deficient mice and its rescue by the TRANCE transgene specifically expressed in lymphocytes. TRANCE-deficient mice showed severe osteopetrosis, with no osteoclasts, marrow spaces, or tooth eruption, and exhibited profound growth retardation at several skeletal sites, including the limbs, skull, and vertebrae. These mice had marked chondrodysplasia, with thick, irregular growth plates and a relative increase in hypertrophic chondrocytes. Transgenic overexpression of TRANCE in lymphocytes of TRANCE-deficient mice rescued osteoclast development in two locations in growing long bones: excavation of marrow cavities permitting hematopoiesis in the marrow spaces, and remodeling of osteopetrotic woven bone in the shafts of long bones into histologically normal lamellar bone. However, osteoclasts in these mice failed to appear at the chondroosseous junction and the metaphyseal periosteum of long bones, nor were they present in tooth eruption pathways. These defects resulted in sclerotic metaphyses with persistence of club-shaped long bones and unerupted teeth, and the growth plate defects were largely unimproved by the TRANCE transgene. Thus, TRANCE-mediated regulation of the skeleton is complex, and impacts chondrocyte differentiation and osteoclast formation in a manner that likely requires local delivery of TRANCE.
Resumo:
Tumor necrosis factor receptor (TNFR) p55-knockout (KO) mice are susceptible profoundly to Salmonella infection. One day after peritoneal inoculation, TNFR-KO mice harbor 1,000-fold more bacteria in liver and spleen than wild-type mice despite the formation of well organized granulomas. Macrophages from TNFR-KO mice produce abundant quantities of reactive oxygen and nitrogen species in response to Salmonella but nevertheless exhibit poor bactericidal activity. Treatment with IFN-γ enhances killing by wild-type macrophages but does not restore the killing defect of TNFR-KO cells. Bactericidal activity of macrophages can be abrogated by a deletion in the gene encoding TNFα but not by saturating concentrations of TNF-soluble receptor, suggesting that intracellular TNFα can regulate killing of Salmonella by macrophages. Peritoneal macrophages from TNFR-KO mice fail to localize NADPH oxidase-containing vesicles to Salmonella-containing vacuoles. A TNFR-KO mutation substantially restores virulence to an attenuated mutant bacterial strain lacking the type III secretory system encoded by Salmonella pathogenicity island 2 (SPI2), suggesting that TNFα and SPI2 have opposing actions on a common pathway of vesicular trafficking. TNFα–TNFRp55 signaling plays a critical role in the immediate innate immune response to an intracellular pathogen by optimizing the delivery of toxic reactive oxygen species to the phagosome.
Resumo:
Tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) by the insulin receptor permits this docking protein to interact with signaling proteins that promote insulin action. Serine phosphorylation uncouples IRS-1 from the insulin receptor, thereby inhibiting its tyrosine phosphorylation and insulin signaling. For this reason, there is great interest in identifying serine/threonine kinases for which IRS-1 is a substrate. Tumor necrosis factor (TNF) inhibited insulin-promoted tyrosine phosphorylation of IRS-1 and activated the Akt/protein kinase B serine-threonine kinase, a downstream target for phosphatidylinositol 3-kinase (PI 3-kinase). The effect of TNF on insulin-promoted tyrosine phosphorylation of IRS-1 was blocked by inhibition of PI 3-kinase and the PTEN tumor suppessor, which dephosphorylates the lipids that mediate PI 3-kinase functions, whereas constitutively active Akt impaired insulin-promoted IRS-1 tyrosine phosphorylation. Conversely, TNF inhibition of IRS-1 tyrosine phosphorylation was blocked by kinase dead Akt. Inhibition of IRS-1 tyrosine phosphorylation by TNF was blocked by rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), a downstream target of Akt. mTOR induced the serine phosphorylation of IRS-1 (Ser-636/639), and such phosphorylation was inhibited by rapamycin. These results suggest that TNF impairs insulin signaling through IRS-1 by activation of a PI 3-kinase/Akt/mTOR pathway, which is antagonized by PTEN.
Resumo:
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is a recently identified member of the tumor necrosis factor cytokine superfamily. TRAIL has been shown to induce apoptosis in various tumor cell lines, whereas most primary cells seem to be resistant. These observations have raised considerable interest in the use of TRAIL in tumor therapy. Yet little is known about the physiological function of TRAIL. This is particularly the case in the immune system, where TRAIL has been suggested by some to be involved in target cell killing and lymphocyte death. We have developed a panel of mAbs and soluble proteins to address the role of TRAIL in lymphocyte development. These studies demonstrate activation-induced sensitization of thymocytes to TRAIL-mediated apoptosis and expression of the apoptosis-inducing TRAIL receptors. However, with the use of several model systems, our subsequent experiments rule out the possibility that TRAIL plays a major role in antigen-induced deletion of thymocytes. In contrast to thymocytes, there is no up-regulation of TRAIL receptors in peripheral T cells on activation, which remain resistant to TRAIL. Thus, susceptibility to TRAIL-induced apoptosis is controlled differently by central and peripheral T cells.