998 resultados para transient dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

T-cell activation requires interaction of T-cell receptors (TCR) with peptide epitopes bound by major histocompatibility complex (MHC) proteins. This interaction occurs at a special cell-cell junction known as the immune or immunological synapse. Fluorescence microscopy has shown that the interplay among one agonist peptide-MHC (pMHC), one TCR and one CD4 provides the minimum complexity needed to trigger transient calcium signalling. We describe a computational approach to the study of the immune synapse. Using molecular dynamics simulation, we report here on a study of the smallest viable model, a TCR-pMHC-CD4 complex in a membrane environment. The computed structural and thermodynamic properties are in fair agreement with experiment. A number of biomolecules participate in the formation of the immunological synapse. Multi-scale molecular dynamics simulations may be the best opportunity we have to reach a full understanding of this remarkable supra-macromolecular event at a cell-cell junction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secondary pyrolysis in fluidized bed fast pyrolysis of biomass is the focus of this work. A novel computational fluid dynamics (CFD) model coupled with a comprehensive chemistry scheme (134 species and 4169 reactions, in CHEMKIN format) has been developed to investigate this complex phenomenon. Previous results from a transient three-dimensional model of primary pyrolysis were used for the source terms of primary products in this model. A parametric study of reaction atmospheres (H2O, N2, H2, CO2, CO) has been performed. For the N2 and H2O atmosphere, results of the model compared favorably to experimentally obtained yields after the temperature was adjusted to a value higher than that used in experiments. One notable deviation versus experiments is pyrolytic water yield and yield of higher hydrocarbons. The model suggests a not overly strong impact of the reaction atmosphere. However, both chemical and physical effects were observed. Most notably, effects could be seen on the yield of various compounds, temperature profile throughout the reactor system, residence time, radical concentration, and turbulent intensity. At the investigated temperature (873 K), turbulent intensity appeared to have the strongest influence on liquid yield. With the aid of acceleration techniques, most importantly dimension reduction, chemistry agglomeration, and in-situ tabulation, a converged solution could be obtained within a reasonable time (∼30 h). As such, a new potentially useful method has been suggested for numerical analysis of fast pyrolysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small-bodied fishes constitute an important assemblage in many wetlands. In wetlands that dry periodically except for small permanent waterbodies, these fishes are quick to respond to change and can undergo large fluctuations in numbers and biomasses. An important aspect of landscapes that are mixtures of marsh and permanent waterbodies is that high rates of biomass production occur in the marshes during flooding phases, while the permanent waterbodies serve as refuges for many biotic components during the dry phases. The temporal and spatial dynamics of the small fishes are ecologically important, as these fishes provide a crucial food base for higher trophic levels, such as wading birds. We develop a simple model that is analytically tractable, describing the main processes of the spatio-temporal dynamics of a population of small-bodied fish in a seasonal wetland environment, consisting of marsh and permanent waterbodies. The population expands into newly flooded areas during the wet season and contracts during declining water levels in the dry season. If the marsh dries completely during these times (a drydown), the fish need refuge in permanent waterbodies. At least three new and general conclusions arise from the model: (1) there is an optimal rate at which fish should expand into a newly flooding area to maximize population production; (2) there is also a fluctuation amplitude of water level that maximizes fish production, and (3) there is an upper limit on the number of fish that can reach a permanent waterbody during a drydown, no matter how large the marsh surface area is that drains into the waterbody. Because water levels can be manipulated in many wetlands, it is useful to have an understanding of the role of these fluctuations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroglobin (Ngb) and cytoglobin (Cygb) are two new additions to the globin family, exhibiting heme iron hexa-coordination, a disulfide bond and large internal cavities. These proteins are implicated in cytoprotection under hypoxic-ischemic conditions, but the molecular basis of their cytoprotective function is unclear. Herein, a photothermal and spectroscopic study of the interactions of diatomic ligands with Ngb, Cygb, myoglobin and hemoglobin is presented. The impact of the disulfide bond in Ngb and Cygb and role of conserved residues in Ngb His64, Val68, Cys55, Cys120 and Tyr44 on conformational dynamics associated with ligand binding/dissociation were investigated. Transient absorption and photoacoustic calorimetry studies indicate that CO photo-dissociation from Ngb leads to a volume expansion (13.4±0.9 mL mol-1), whereas a smaller volume change was determined for Ngb with reduced Cys (ΔV=4.6±0.3 mL mol-1). Furthermore, Val68 side chain regulates ligand migration between the distal pocket and internal hydrophobic cavities since Val68Phe geminate quantum yield is ∼2.7 times larger than that of WT Ngb. His64Gln and Tyr44Phe mutations alter the thermodynamic parameters associated with CO photo-release indicating that electrostatic/hydrogen binding network that includes heme propionate groups, Lys 67, His64, and Tyr 44 in Ngb modulates the energetics of CO photo-dissociation. In Cygb, CO escape from the protein matrix is fast (< 40 ns) with a ΔH of 18±2 kcal mol-1 in Cygbred, whereas disulfide bridge formation promotes a biphasic ligand escape associated with an overall enthalpy change of 9±4 kcal mol-1. Therefore, the disulfide bond modulates conformational dynamics in Ngb and Cygb. I propose that in Cygb with reduced Cys the photo-dissociated ligand escapes through the hydrophobic tunnel as occurs in Ngb, whereas the CO preferentially migrates through the His64 gate in Cygbox. To characterize Cygb surface 1,8-ANS interactions with Cygb were investigated employing fluorescence spectroscopy, ITC and docking simulations. Two 1,8-ANS binding sites were identified. One binding site is located close to the extended N-terminus of Cygb and was also identified as a binding site for oleate. Furthermore, guanidinium hydrochloride-induced unfolding studies of Cygb reveal that the disulfide bond does not impact Cygb stability, whereas binding of cyanide slightly increases the protein stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigated the risk of accidental release of hydrocarbons during transportation and storage. Transportation of hydrocarbons from an offshore platform to processing units through subsea pipelines involves risk of release due to pipeline leakage resulting from corrosion, plastic deformation caused by seabed shakedown or damaged by contact with drifting iceberg. The environmental impacts of hydrocarbon dispersion can be severe. Overall safety and economic concerns of pipeline leakage at subsea environment are immense. A large leak can be detected by employing conventional technology such as, radar, intelligent pigging or chemical tracer but in a remote location like subsea or arctic, a small chronic leak may be undetected for a period of time. In case of storage, an accidental release of hydrocarbon from the storage tank could lead pool fire; further it could escalate to domino effects. This chain of accidents may lead to extremely severe consequences. Analyzing past accident scenarios it is observed that more than half of the industrial domino accidents involved fire as a primary event, and some other factors for instance, wind speed and direction, fuel type and engulfment of the compound. In this thesis, a computational fluid dynamics (CFD) approach is taken to model the subsea pipeline leak and the pool fire from a storage tank. A commercial software package ANSYS FLUENT Workbench 15 is used to model the subsea pipeline leakage. The CFD simulation results of four different types of fluids showed that the static pressure and pressure gradient along the axial length of the pipeline have a sharp signature variation near the leak orifice at steady state condition. Transient simulation is performed to obtain the acoustic signature of the pipe near leak orifice. The power spectral density (PSD) of acoustic signal is strong near the leak orifice and it dissipates as the distance and orientation from the leak orifice increase. The high-pressure fluid flow generates more noise than the low-pressure fluid flow. In order to model the pool fire from the storage tank, ANSYS CFX Workbench 14 is used. The CFD results show that the wind speed has significant contribution on the behavior of pool fire and its domino effects. The radiation contours are also obtained from CFD post processing, which can be applied for risk analysis. The outcome of this study will be helpful for better understanding of the domino effects of pool fire in complex geometrical settings of process industries. The attempt to reduce and prevent risks is discussed based on the results obtained from the numerical simulations of the numerical models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multifunctional calcium/calmodulin dependent protein kinases (CaMKs) are key regulators of spine structural plasticity and long-term potentiation (LTP) in neurons. CaMKs have promiscuous and overlapping substrate recognition motifs, and are distinguished in their regulatory role based on differences in the spatiotemporal dynamics of activity. While the function and activity of CaMKII in synaptic plasticity has been extensively studied, that of CaMKI, another major class of CaMK required for LTP, still remain elusive.

Here, we develop a Förster’s Resonance Energy Transfer (FRET) based sensor to measure the spatiotemporal activity dynamics of CaMK1. We monitored CaMKI activity using 2-photon fluorescence lifetime imaging, while inducing LTP in single dendritic spines of rat (Rattus Norvegicus, strain Sprague Dawley) hippocampal CA1 pyramidal neurons using 2-photon glutamate uncaging. Using RNA-interference and pharmacological means, we also characterize the role of CaMKI during spine structural plasticity.

We found that CaMKI was rapidly and transiently activated with a rise time of ~0.3 s and decay time of ~1 s in response to each uncaging pulse. Activity of CaMKI spread out of the spine. Phosphorylation of CaMKI by CaMKK was required for this spreading and for the initial phase of structural LTP. Combined with previous data showing that CaMKII is restricted to the stimulated spine and required for long-term maintenance of structural LTP, these results suggest that CaMK diversity allows the same incoming signal – calcium – to independently regulate distinct phases of LTP by activating different CaMKs with distinct spatiotemporal dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transient simulations are widely used in studying the past climate as they provide better comparison with any exisiting proxy data. However, multi-millennial transient simulations using coupled climate models are usually computationally very expensive. As a result several acceleration techniques are implemented when using numerical simulations to recreate past climate. In this study, we compare the results from transient simulations of the present and the last interglacial with and without acceleration of the orbital forcing, using the comprehensive coupled climate model CCSM3 (Community Climate System Model 3). Our study shows that in low-latitude regions, the simulation of long-term variations in interglacial surface climate is not significantly affected by the use of the acceleration technique (with an acceleration factor of 10) and hence, large-scale model-data comparison of surface variables is not hampered. However, in high-latitude regions where the surface climate has a direct connection to the deep ocean, e.g. in the Southern Ocean or the Nordic Seas, acceleration-induced biases in sea-surface temperature evolution may occur with potential influence on the dynamics of the overlying atmosphere. The data provided here are from both accelerated and non-accelerated runs as decadal mean values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different industrial induction melting processes involve free surface and melt-solid interface of the liquid metal subject to dynamic change during the technological operation. Simulation of the liquid metal dynamics requires to solve the non-linear, coupled hydrodynamic-electromagnetic-heat transfer problem accounting for the time development of the liquid metal free boundary with a suitable turbulent viscosity model. The present paper describes a numerical solution method applicable for various axisymmetric induction melting processes, such as, crucible with free top surface, levitation, semi-levitation, cold crucible and similar melting techniques. The presented results in the cases of semi-levitation and crucible with free top surface meltings demonstrate oscillating transient behaviour of the free metal surface indicating the presence of gravity-inertial-electromagnetic waves which are coupled to the internal fluid flow generated by both the rotational and potential parts of the electromagnetic force.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Una detallada descripción de la dinámica de bajas energías del entrelazamiento multipartito es proporcionada para sistemas armónicos en una gran variedad de escenarios disipativos. Sin hacer ninguna aproximación central, esta descripción yace principalmente sobre un conjunto razonable de hipótesis acerca del entorno e interacción entorno-sistema, ambas consistente con un análisis lineal de la dinámica disipativa. En la primera parte se deriva un criterio de inseparabilidad capaz de detectar el entrelazamiento k-partito de una extensa clase de estados gausianos y no-gausianos en sistemas de variable continua. Este criterio se emplea para monitorizar la dinámica transitiva del entrelazamiento, mostrando que los estados no-gausianos pueden ser tan robustos frente a los efectos disipativos como los gausianos. Especial atención se dedicada a la dinámica estacionaria del entrelazamiento entre tres osciladores interaccionando con el mismo entorno o diferentes entornos a distintas temperaturas. Este estudio contribuye a dilucidar el papel de las correlaciones cuánticas en el comportamiento de la corrientes energéticas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding and measuring the interaction of light with sub-wavelength structures and atomically thin materials is of critical importance for the development of next generation photonic devices.  One approach to achieve the desired optical properties in a material is to manipulate its mesoscopic structure or its composition in order to affect the properties of the light-matter interaction.  There has been tremendous recent interest in so called two-dimensional materials, consisting of only a single to a few layers of atoms arranged in a planar sheet.  These materials have demonstrated great promise as a platform for studying unique phenomena arising from the low-dimensionality of the material and for developing new types of devices based on these effects.  A thorough investigation of the optical and electronic properties of these new materials is essential to realizing their potential.  In this work we present studies that explore the nonlinear optical properties and carrier dynamics in nanoporous silicon waveguides, two-dimensional graphite (graphene), and atomically thin black phosphorus. We first present an investigation of the nonlinear response of nanoporous silicon optical waveguides using a novel pump-probe method. A two-frequency heterodyne technique is developed in order to measure the pump-induced transient change in phase and intensity in a single measurement. The experimental data reveal a characteristic material response time and temporally resolved intensity and phase behavior matching a physical model dominated by free-carrier effects that are significantly stronger and faster than those observed in traditional silicon-based waveguides.  These results shed light on the large optical nonlinearity observed in nanoporous silicon and demonstrate a new measurement technique for heterodyne pump-probe spectroscopy. Next we explore the optical properties of low-doped graphene in the terahertz spectral regime, where both intraband and interband effects play a significant role. Probing the graphene at intermediate photon energies enables the investigation of the nonlinear optical properties in the graphene as its electron system is heated by the intense pump pulse. By simultaneously measuring the reflected and transmitted terahertz light, a precise determination of the pump-induced change in absorption can be made. We observe that as the intensity of the terahertz radiation is increased, the optical properties of the graphene change from interband, semiconductor-like absorption, to a more metallic behavior with increased intraband processes. This transition reveals itself in our measurements as an increase in the terahertz transmission through the graphene at low fluence, followed by a decrease in transmission and the onset of a large, photo-induced reflection as fluence is increased.  A hybrid optical-thermodynamic model successfully describes our observations and predicts this transition will persist across mid- and far-infrared frequencies.  This study further demonstrates the important role that reflection plays since the absorption saturation intensity (an important figure of merit for graphene-based saturable absorbers) can be underestimated if only the transmitted light is considered. These findings are expected to contribute to the development of new optoelectronic devices designed to operate in the mid- and far-infrared frequency range.  Lastly we discuss recent work with black phosphorus, a two-dimensional material that has recently attracted interest due to its high mobility and direct, configurable band gap (300 meV to 2eV), depending on the number of atomic layers comprising the sample. In this work we examine the pump-induced change in optical transmission of mechanically exfoliated black phosphorus flakes using a two-color optical pump-probe measurement. The time-resolved data reveal a fast pump-induced transparency accompanied by a slower absorption that we attribute to Pauli blocking and free-carrier absorption, respectively. Polarization studies show that these effects are also highly anisotropic - underscoring the importance of crystal orientation in the design of optical devices based on this material. We conclude our discussion of black phosphorus with a study that employs this material as the active element in a photoconductive detector capable of gigahertz class detection at room temperature for mid-infrared frequencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Partially clonal organisms are very common in nature, yet the influence of partial asexuality on the temporal dynamics of genetic diversity remains poorly understood. Mathematical models accounting for clonality predict deviations only for extremely rare sex and only towards mean inbreeding coefficient (F-IS) over bar < 0. Yet in partially clonal species, both F-IS < 0 and F-IS > 0 are frequently observed also in populations where there is evidence for a significant amount of sexual reproduction. Here, we studied the joint effects of partial clonality, mutation and genetic drift with a state-and-time discrete Markov chain model to describe the dynamics of F-IS over time under increasing rates of clonality. Results: Results of the mathematical model and simulations show that partial clonality slows down the asymptotic convergence to F-IS = 0. Thus, although clonality alone does not lead to departures from Hardy-Weinberg expectations once reached the final equilibrium state, both negative and positive F-IS values can arise transiently even at intermediate rates of clonality. More importantly, such "transient" departures from Hardy Weinberg proportions may last long as clonality tunes up the temporal variation of F-IS and reduces its rate of change over time, leading to a hyperbolic increase of the maximal time needed to reach the final mean (F-IS,F-infinity) over bar value expected at equilibrium. Conclusion: Our results argue for a dynamical interpretation of F-IS in clonal populations. Negative values cannot be interpreted as unequivocal evidence for extremely scarce sex but also as intermediate rates of clonality in finite populations. Complementary observations (e.g. frequency distribution of multiloci genotypes, population history) or time series data may help to discriminate between different possible conclusions on the extent of clonality when mean (F-IS) over bar values deviating from zero and/or a large variation of F-IS over loci are observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study networks of nonlocally coupled electronic oscillators that can be described approximately by a Kuramoto-like model. The experimental networks show long complex transients from random initial conditions on the route to network synchronization. The transients display complex behaviors, including resurgence of chimera states, which are network dynamics where order and disorder coexists. The spatial domain of the chimera state moves around the network and alternates with desynchronized dynamics. The fast time scale of our oscillators (on the order of 100ns) allows us to study the scaling of the transient time of large networks of more than a hundred nodes, which has not yet been confirmed previously in an experiment and could potentially be important in many natural networks. We find that the average transient time increases exponentially with the network size and can be modeled as a Poisson process in experiment and simulation. This exponential scaling is a result of a synchronization rate that follows a power law of the phase-space volume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents investigations of chemical reactions occurring at the liquid/vapor interface studied using novel sampling methodologies coupled with detection by mass spectrometry. Chapters 2 and 3 utilize the recently developed technique of field-induced droplet ionization mass spectrometry (FIDI-MS), in which the application of a strong electric field to a pendant microliter droplet results in the ejection of highly charged progeny droplets from the liquid surface. In Chapter 2, this method is employed to study the base-catalyzed dissociation of a surfactant molecule at the liquid/vapor interface upon uptake of ammonia from the gas phase. This process is observed to occur without significant modulation of the bulk solution pH, suggesting a transient increase in surface pH following the uptake of gaseous ammonia. Chapter 3 presents real-time studies of the oxidation of the model tropospheric organic compound glycolaldehyde by photodissociation of iron (III) oxalate complexes. The oxidation products of glycolaldehyde formed in this process are identified, and experiments in a deoxygenated environment identify the role of oxygen in the oxidation pathway and in the regeneration of iron (III) following photo-initiated reduction. Chapter 4 explores alternative methods for the study of heterogeneous reaction processes by mass spectrometric sampling from liquid surfaces. Bursting bubble ionization (BBI) and interfacial sampling with an acoustic transducer (ISAT) generate nanoliter droplets from a liquid surface that can be sampled via the atmospheric pressure interface of a mass spectrometer. Experiments on the oxidation of oleic acid by ozone using ISAT are also presented. Chapters 5 and 6 detail mechanistic studies and applications of free-radical-initiated peptide sequencing (FRIPS), a technique employing gas-phase free radical chemistry to the sequencing of peptides and proteins by mass spectrometry. Chapter 5 presents experimental and theoretical studies on the anomalous mechanism of dissociation observed in the presence of serine and threonine residues in peptides. Chapter 6 demonstrates the combination of FRIPS with ion mobility-mass spectrometry (IM-MS) for the separation of isomeric peptides.