974 resultados para transformed gravity model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteocyte cells are the most abundant cells in human bone tissue. Due to their unique morphology and location, osteocyte cells are thought to act as regulators in the bone remodelling process, and are believed to play an important role in astronauts’ bone mass loss after long-term space missions. There is increasing evidence showing that an osteocyte’s functions are highly affected by its morphology. However, changes in an osteocyte’s morphology under an altered gravity environment are still not well documented. Several in vitro studies have been recently conducted to investigate the morphological response of osteocyte cells to the microgravity environment, where osteocyte cells were cultured on a two-dimensional flat surface for at least 24 hours before microgravity experiments. Morphology changes of osteocyte cells in microgravity were then studied by comparing the cell area to 1g control cells. However, osteocyte cells found in vivo are with a more 3D morphology, and both cell body and dendritic processes are found sensitive to mechanical loadings. A round shape osteocyte’s cells support a less stiff cytoskeleton and are more sensitive to mechanical stimulations compared with flat cellular morphology. Thus, the relative flat and spread shape of isolated osteocytes in 2D culture may greatly hamper their sensitivity to a mechanical stimulus, and the lack of knowledge on the osteocyte’s morphological characteristics in culture may lead to subjective and noncomprehensive conclusions of how altered gravity impacts on an osteocyte’s morphology. Through this work empirical models were developed to quantitatively predicate the changes of morphology in osteocyte cell lines (MLO-Y4) in culture, and the response of osteocyte cells, which are relatively round in shape, to hyper-gravity stimulation has also been investigated. The morphology changes of MLO-Y4 cells in culture were quantified by measuring cell area and three dimensionless shape features including aspect ratio, circularity and solidity by using widely accepted image analysis software (ImageJTM). MLO-Y4 cells were cultured at low density (5×103 per well) and the changes in morphology were recorded over 10 hours. Based on the data obtained from the imaging analysis, empirical models were developed using the non-linear regression method. The developed empirical models accurately predict the morphology of MLO-Y4 cells for different culture times and can, therefore, be used as a reference model for analysing MLO-Y4 cell morphology changes within various biological/mechanical studies, as necessary. The morphological response of MLO-Y4 cells with a relatively round morphology to hyper-gravity environment has been investigated using a centrifuge. After 2 hours culture, MLO-Y4 cells were exposed to 20g for 30mins. Changes in the morphology of MLO-Y4 cells are quantitatively analysed by measuring the average value of cell area and dimensionless shape factors such as aspect ratio, solidity and circularity. In this study, no significant morphology changes were detected in MLO-Y4 cells under a hyper-gravity environment (20g for 30 mins) compared with 1g control cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycrystalline gold electrodes of the kind that are routinely used in analysis and catalysis in aqueous media are often regarded as exhibiting relatively simple double-layer charging/discharging and monolayer oxide formation/ removal in the positive potential region. Application of the large amplitude Fourier transformed alternating current (FT-ac) voltammetric technique that allows the faradaic current contribution of fast electron-transfer processes to be emphasized in the higher harmonic components has revealed the presence of well-defined faradaic (premonolayer oxidation) processes at positive potentials in the double-layer region in acidic and basic media which are enhanced by electrochemical activation. These underlying quasi-reversible interfacial electron-transfer processes may mediate the course of electrocatalytic oxidation reactions of hydrazine, ethylene glycol, and glucose on gold electrodes in aqueous media. The observed responses support key assumptions associated with the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The higher harmonic components available from large-amplitude Fourier-transformed alternating current (FT-ac) voltammetry enable the surface active state of a copper electrode in basic media to be probed in much more detail than possible with previously used dc methods. In particular, the absence of capacitance background current allows low-level Faradaic current contributions of fast electron-transfer processes to be detected; these are usually completely undetectable under conditions of dc cyclic voltammetry. Under high harmonic FT-ac voltammetric conditions, copper electrodes exhibit well-defined and reversible premonolayer oxidation responses at potentials within the double layer region in basic 1.0 M NaOH media. This process is attributed to oxidation of copper adatoms (Cu*) of low bulk metal lattice coordination numbers to surface-bonded, reactive hydrated oxide species. Of further interest is the observation that cathodic polarization in 1.0 M NaOH significantly enhances the current detected in each of the fundamental to sixth FT-ac harmonic components in the Cu*/Cu hydrous oxide electron-transfer process which enables the underlying electron transfer processes in the higher harmonics to be studied under conditions where the dc capacitance response is suppressed; the results support the incipient hydrous oxide adatom mediator (IHOAM) model of electrocatalysis. The underlying quasi-reversible interfacial Cu*/Cu hydrous oxide process present under these conditions is shown to mediate the reduction of nitrate at a copper electrode, while the mediator for the hydrazine oxidation reaction appears to involve a different mediator or active state redox couple. Use of FT-ac voltammetry offers prospects for new insights into the nature of active sites and electrocatalysis at the electrode/solution interface of Group 11 metals in aqueous media.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global pressures of burgeoning population growth and consumption are threatening efforts to reduce negative environmental pressures associated with development such as atmospheric, land and water pollution. For example, the world’s population is now growing at over 70 million per year or 1 billion per decade (Brown, 2007), increasing from 3.5 billion in 1970, to 5 billion in 1990, to 7 billion by 2010 (United Nations, 2002). In 1990 only 13 percent of the global population lived in cities, while in 2007 more than half did. More than 60 percent of the global population lives within 100 kilometers of the coastline (World Resources Institute, 2005) and nearly all of the population growth hereon is forecast to happen in developing countries (Postel, 1999). Future levels of stress on the global environment are therefore likely to increase if current trends are used for forecasting, which is particularly challenging as scientists are already observing significant signs of degradation and failure in environmental systems. For example, the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC, 2007) provided an nequivocal link between climate change and current human activities, in particular: the burning of fossil fuels; deforestation and land clearing; the use of synthetic greenhouse gases; and decomposition of wastes from landfill. The UK Stern Review concluded that within our lifetime there is between a 77 to 99 percent chance (depending on the climate model used) of the global average temperature rising by more than 2 degrees Celsius (Stern, 2006), with a likely greenhouse gas concentration in the atmosphere of 550 parts per million (ppm) or more by around 2100.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poor compliance with speed limits is a serious safety concern in work zones. Most studies of work zone speeds have focused on descriptive analyses and statistical testing without systematically capturing the effects of vehicle and traffic characteristics. Consequently, little is known about how the characteristics of surrounding traffic and platoons influence speeds. This paper develops a Tobit regression technique for innovatively modeling the probability and the magnitude of non-compliance with speed limits at various locations in work zones. Speed data is transformed into two groups—continuous for non-compliant and left-censored for compliant drivers—to model in a Tobit model framework. The modeling technique is illustrated using speed data from three long-term highway work zones in Queensland, Australia. Consistent and plausible model estimates across the three work zones support the appropriateness and validity of the technique. The results show that the probability and magnitude of speeding was higher for leaders of platoons with larger front gaps, during late afternoon and early morning, when traffic volumes were higher, and when higher proportions of surrounding vehicles were non-compliant. Light vehicles and their followers were also more likely to speed than others. Speeding was more common and greater in magnitude upstream than in the activity area, with higher compliance rates close to the end of the activity area and close to stop/slow traffic controllers. The modeling technique and results have great potential to assist in deployment of appropriate countermeasures by better identifying the traffic characteristics associated with speeding and the locations of lower compliance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fuzzy dynamic flood routing model (FDFRM) for natural channels is presented, wherein the flood wave can be approximated to a monoclinal wave. This study is based on modification of an earlier published work by the same authors, where the nature of the wave was of gravity type. Momentum equation of the dynamic wave model is replaced by a fuzzy rule based model, while retaining the continuity equation in its complete form. Hence, the FDFRM gets rid of the assumptions associated with the momentum equation. Also, it overcomes the necessity of calculating friction slope (S-f) in flood routing and hence the associated uncertainties are eliminated. The fuzzy rule based model is developed on an equation for wave velocity, which is obtained in terms of discontinuities in the gradient of flow parameters. The channel reach is divided into a number of approximately uniform sub-reaches. Training set required for development of the fuzzy rule based model for each sub-reach is obtained from discharge-area relationship at its mean section. For highly heterogeneous sub-reaches, optimized fuzzy rule based models are obtained by means of a neuro-fuzzy algorithm. For demonstration, the FDFRM is applied to flood routing problems in a fictitious channel with single uniform reach, in a fictitious channel with two uniform sub-reaches and also in a natural channel with a number of approximately uniform sub-reaches. It is observed that in cases of the fictitious channels, the FDFRM outputs match well with those of an implicit numerical model (INM), which solves the dynamic wave equations using an implicit numerical scheme. For the natural channel, the FDFRM Outputs are comparable to those of the HEC-RAS model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonminimal coupling of a self-interacting complex scalar field with gravity is studied. For a Robertson-Walker open universe the stable solutions of the scalar-field equations are time dependent. As a result of this, a novel spontaneous symmetry breaking occurs which leads to a varying effective gravitational coupling coefficient. It is found that the coupling coefficient changes sign below a critical ‘‘radius’’ of the Universe implying the appearance of repulsive gravity. The occurrence of the repulsive interaction at an early epoch facilitates singularity avoidance. The model also provides a solution to the horizon problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

F4 fimbriae of enterotoxigenic Escherichia coli (ETEC) are highly stable multimeric structures with a capacity to evoke mucosal immune responses. With these characters F4 offer a unique model system to study oral vaccination against ETEC-induced porcine postweaning diarrhea. Postweaning diarrhea is a major problem in piggeries worldwide and results in significant economic losses. No vaccine is currently available to protect weaned piglets against ETEC infections. Transgenic plants provide an economically feasible platform for large-scale production of vaccine antigens for animal health. In this study, the capacity of transgenic plants to produce FaeG protein, the major structural subunit and adhesin of F4 fimbria, was evaluated. Using the model plant tobacco, the optimal subcellular location for FaeG accumulation was examined. Targeting of FaeG into chloroplasts offered a superior accumulation level of 1% of total soluble proteins (TSP) over the other investigated subcellular locations, namely, the endoplasmic reticulum and the apoplast. Moreover, we determined whether the FaeG protein, when isolated from its fimbrial background and produced in a plant cell, would retain the key properties of an oral vaccine, i.e. stability in gastrointestinal conditions, binding to porcine intestinal F4 receptors (F4R), and inhibition of the F4-possessing (F4+) ETEC attachment to F4R. The chloroplast-derived FaeG protein did show resistance against low pH and proteolysis in the simulated gastrointestinal conditions and was able to bind to the F4R, subsequently inhibiting the F4+ ETEC binding in a dose-dependent manner. To investigate the oral immunogenicity of FaeG protein, the edible crop plant alfalfa was transformed with the chloroplast-targeting construct and equally to tobacco plants, a high-yield FaeG accumulation of 1% of TSP was obtained. A similar yield was also obtained in the seeds of barley, a valuable crop plant, when the FaeG-encoding gene was expressed under an endosperm-specific promoter and subcellularly targeted into the endoplasmic reticulum. Furthermore, desiccated alfalfa plants and barley grains were shown to have a capacity to store FaeG protein in a stable form for years. When the transgenic alfalfa plants were administred orally to weaned piglets, slight F4-specific systemic and mucosal immune responses were induced. Co-administration of the transgenic alfalfa and the mucosal adjuvant cholera toxin enhanced the F4-specific immune response; the duration and number of F4+ E. coli excretion following F4+ ETEC challenge were significantly reduced as compared with pigs that had received nontransgenic plant material. In conclusion, the results suggest that transgenic plants producing the FaeG subunit protein could be used for production and delivery of oral vaccines against porcine F4+ ETEC infections. The findings here thus present new approaches to develop the vaccination strategy against porcine postweaning diarrhea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the simplest model that permits a largely analytical exploration of the m =1 counter-rotating instability in a `hot' nearly Keplerian disc of collisionless self-gravitating matter. The model consists of a two-component softened gravity disc, whose linear modes are analysed using the Wentzel-Kramers-Brillouin approximation. The modes are slow in the sense that their (complex) frequency is smaller than the Keplerian orbital frequency by a factor which is of order the ratio of the disc mass to the mass of the central object. Very simple analytical expressions are derived for the precession frequencies and growth rates of local modes; it is shown that a nearly Keplerian discm must be unrealistically hot to avoid an overstability. Global modes are constructed for the case of zero net rotation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent reanalysis of the data of the Eötvös experiment suggested the existence of a new force. We show that a negative energy massive scalar field minimally coupled to gravity in a background Schwarzschild metric naturally leads to a potential which can explain the small anomalous effect in the Eötvös experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A continuum model based on the critical state theory of soil mechanics is used to generate stress and density profiles, and to compute discharge velocities for the plane flow of cohesionless materials. Two types of yield loci are employed, namely, a yield locus with a corner, and a smooth yield locus. The yield locus with a corner leads to computational difficulties. For the smooth yield locus, results are found to be relatively insensitive to the shape of the yield locus, the location of the upper traction-free surface and the density specified on this surface. This insensitivity arises from the existence of asymptotic stress and density fields, to which the solution tends to converge on moving down the hopper. Numerical and approximate analytical solutions are obtained for these fields and the latter is used to derive an expression for the discharge velocity. This relation predicts discharge velocities to within 13% of the exact (numerical) values. While the assumption of incompressibility has been frequently used in the literature, it is shown here that in some cases, this leads to discharge velocities which are significantly higher than those obtained by the incorporation of density variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exact traveling-wave solutions of time-dependent nonlinear inhomogeneous PDEs, describing several model systems in geophysical fluid dynamics, are found. The reduced nonlinear ODEs are treated as systems of linear algebraic equations in the derivatives. A variety of solutions are found, depending on the rank of the algebraic systems. The geophysical systems include acoustic gravity waves, inertial waves, and Rossby waves. The solutions describe waves which are, in general, either periodic or monoclinic. The present approach is compared with the earlier one due to Grundland (1974) for finding exact solutions of inhomogeneous systems of nonlinear PDEs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model for static foam drainage, based on the pentagonal dodecahedral shape of bubbles, that takes into account the surface mobility of both films and Plateau border walls has been developed. The model divides the Plateau borders into nearly horizontal and nearly vertical categories and assigns different roles to them. The films are assumed to drain into all the adjacent Plateau borders equally. The horizontal Plateau borders are assumed to receive liquid from films and drain into vertical Plateau borders, which in turn form the main component for gravity drainage. The model yields the liquid holdup values for films, horizontal Plateau borders and vertical Plateau borders as functions of height and time. The model has been tested on static foams whose cumulative drainage was measured as a function of time. The experimental data on the effect of foam height, initial holdup, surface viscosity, etc. can be explained by the model quantitatively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cylindrical Couette device is commonly employed to study the rheology of fluids, but seldom used for dense granular materials. Plasticity theories used for granular flows predict a stress field that is independent of the shear rate, but otherwise similar to that in fluids. In this paper we report detailed measurements of the stress as a function of depth, and show that the stress profile differs fundamentally from that of fluids, from the predictions of plasticity theories, and from intuitive expectation. In the static state, a part of the weight of the material is transferred to the walls by a downward vertical shear stress, bringing about the well-known Janssen saturation of the stress in vertical columns. When the material is sheared, the vertical shear stress changes sign, and the magnitudes of all components of the stress rise rapidly with depth. These qualitative features are preserved over a range of the Couette gap and shear rate, for smooth and rough walls and two model granular materials. To explain the anomalous rheological response, we consider some hypotheses that seem plausibleapriori, but showthat none survive after careful analysis of the experimental observations. We argue that the anomalous stress is due to an anisotropic fabric caused by the combined actions of gravity, shear, and frictional walls, for which we present indirect evidence from our experiments. A general theoretical framework for anisotropic plasticity is then presented. The detailed mechanics of how an anisotropic fabric is brought about by the above-mentioned factors is not clear, and promises to be a challenging problem for future investigations. (C) 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How does the presence of plastic active dendrites in a pyramidal neuron alter its spike initiation dynamics? To answer this question, we measured the spike-triggered average (STA) from experimentally constrained, conductance-based hippocampal neuronal models of various morphological complexities. We transformed the STA computed from these models to the spectral and the spectrotemporal domains and found that the spike initiation dynamics exhibited temporally localized selectivity to a characteristic frequency. In the presence of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, the STA characteristic frequency strongly correlated with the subthreshold resonance frequency in the theta frequency range. Increases in HCN channel density or in input variance increased the STA characteristic frequency and its selectivity strength. In the absence of HCN channels, the STA exhibited weak delta frequency selectivity and the characteristic frequency was related to the repolarization dynamics of the action potentials and the recovery kinetics of sodium channels from inactivation. Comparison of STA obtained with inputs at various dendritic locations revealed that nonspiking and spiking dendrites increased and reduced the spectrotemporal integration window of the STA with increasing distance from the soma as direct consequences of passive filtering and dendritic spike initiation, respectively. Finally, the presence of HCN channels set the STA characteristic frequency in the theta range across the somatodendritic arbor and specific STA measurements were strongly related to equivalent transfer-impedance-related measurements. Our results identify explicit roles for plastic active dendrites in neural coding and strongly recommend a dynamically reconfigurable multi-STA model to characterize location-dependent input feature selectivity in pyramidal neurons.