966 resultados para trajectory control
Resumo:
This work investigated the differences between multileaf collimator (MLC) positioning accuracy determined using either log files or electronic portal imaging devices (EPID) and then assessed the possibility of reducing patient specific quality control (QC) via phantom-less methodologies. In-house software was developed, and validated, to track MLC positional accuracy with the rotational and static gantry picket fence tests using an integrated electronic portal image. This software was used to monitor MLC daily performance over a 1 year period for two Varian TrueBeam linear accelerators, with the results directly compared with MLC positions determined using leaf trajectory log files. This software was validated by introducing known shifts and collimator errors. Skewness of the MLCs was found to be 0.03 ± 0.06° (mean ±1 standard deviation (SD)) and was dependent on whether the collimator was rotated manually or automatically. Trajectory log files, analysed using in-house software, showed average MLC positioning errors with a magnitude of 0.004 ± 0.003 mm (rotational) and 0.004 ± 0.011 mm (static) across two TrueBeam units over 1 year (mean ±1 SD). These ranges, as indicated by the SD, were lower than the related average MLC positioning errors of 0.000 ± 0.025 mm (rotational) and 0.000 ± 0.039 mm (static) that were obtained using the in-house EPID based software. The range of EPID measured MLC positional errors was larger due to the inherent uncertainties of the procedure. Over the duration of the study, multiple MLC positional errors were detected using the EPID based software but these same errors were not detected using the trajectory log files. This work shows the importance of increasing linac specific QC when phantom-less methodologies, such as the use of log files, are used to reduce patient specific QC. Tolerances of 0.25 mm have been created for the MLC positional errors using the EPID-based automated picket fence test. The software allows diagnosis of any specific leaf that needs repair and gives an indication as to the course of action that is required.
Resumo:
This article proposes a closed-loop control scheme based on joint-angle feedback for cable-driven parallel manipulators (CDPMs), which is able to overcome various difficulties resulting from the flexible nature of the driven cables to achieve higher control accuracy. By introducing a unique structure design that accommodates built-in encoders in passive joints, the seven degrees of freedom (7-DOF) CDPM can obtain joint angle values without external sensing devices, and it is used for feedback control together with a proper closed-loop control algorithm. The control algorithm has been derived from the time differential of the kinematic formulation, which relates the joint angular velocities to the time derivative of cable lengths. In addition, the Lyapunov stability theory and Monte Carlo method have been used to mathematically verify the self-feedback control law that has tolerance for parameter errors. With the aid of co-simulation technique, the self-feedback closed-loop control is applied on a 7-DOF CDPM and it shows higher motion accuracy than the one with an open-loop control. The trajectory tracking experiment on the motion control of the 7-DOF CDPM demonstrated a good performance of the self-feedback control method.
Resumo:
We present a new dual-gas multi-jet HHG source which can be perfectly controlled via phasematching of the long and short trajectory contributions and is applicable for high average power driver laser systems. © 2011 Optical Society of America.
Resumo:
This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields
Resumo:
Aquesta tesi està inspirada en els agents naturals per tal de planificar de manera dinàmica la navegació d'un robot diferencial de dues rodes. Les dades dels sistemes de percepció són integrades dins una graella d'ocupació de l'entorn local del robot. La planificació de les trajectòries es fa considerant la configuració desitjada del robot, així com els vértexs més significatius dels obstacles més propers. En el seguiment de les trajectòries s'utilitzen tècniques locals de control predictiu basades en el model, amb horitzons de predicció inferiors a un segon. La metodologia emprada és validada mitjançant nombrosos experiments.
Resumo:
The aim of this thesis is to narrow the gap between two different control techniques: the continuous control and the discrete event control techniques DES. This gap can be reduced by the study of Hybrid systems, and by interpreting as Hybrid systems the majority of large-scale systems. In particular, when looking deeply into a process, it is often possible to identify interaction between discrete and continuous signals. Hybrid systems are systems that have both continuous, and discrete signals. Continuous signals are generally supposed continuous and differentiable in time, since discrete signals are neither continuous nor differentiable in time due to their abrupt changes in time. Continuous signals often represent the measure of natural physical magnitudes such as temperature, pressure etc. The discrete signals are normally artificial signals, operated by human artefacts as current, voltage, light etc. Typical processes modelled as Hybrid systems are production systems, chemical process, or continuos production when time and continuous measures interacts with the transport, and stock inventory system. Complex systems as manufacturing lines are hybrid in a global sense. They can be decomposed into several subsystems, and their links. Another motivation for the study of Hybrid systems is the tools developed by other research domains. These tools benefit from the use of temporal logic for the analysis of several properties of Hybrid systems model, and use it to design systems and controllers, which satisfies physical or imposed restrictions. This thesis is focused in particular types of systems with discrete and continuous signals in interaction. That can be modelled hard non-linealities, such as hysteresis, jumps in the state, limit cycles, etc. and their possible non-deterministic future behaviour expressed by an interpretable model description. The Hybrid systems treated in this work are systems with several discrete states, always less than thirty states (it can arrive to NP hard problem), and continuous dynamics evolving with expression: with Ki ¡ Rn constant vectors or matrices for X components vector. In several states the continuous evolution can be several of them Ki = 0. In this formulation, the mathematics can express Time invariant linear system. By the use of this expression for a local part, the combination of several local linear models is possible to represent non-linear systems. And with the interaction with discrete events of the system the model can compose non-linear Hybrid systems. Especially multistage processes with high continuous dynamics are well represented by the proposed methodology. Sate vectors with more than two components, as third order models or higher is well approximated by the proposed approximation. Flexible belt transmission, chemical reactions with initial start-up and mobile robots with important friction are several physical systems, which profits from the benefits of proposed methodology (accuracy). The motivation of this thesis is to obtain a solution that can control and drive the Hybrid systems from the origin or starting point to the goal. How to obtain this solution, and which is the best solution in terms of one cost function subject to the physical restrictions and control actions is analysed. Hybrid systems that have several possible states, different ways to drive the system to the goal and different continuous control signals are problems that motivate this research. The requirements of the system on which we work is: a model that can represent the behaviour of the non-linear systems, and that possibilities the prediction of possible future behaviour for the model, in order to apply an supervisor which decides the optimal and secure action to drive the system toward the goal. Specific problems can be determined by the use of this kind of hybrid models are: - The unity of order. - Control the system along a reachable path. - Control the system in a safe path. - Optimise the cost function. - Modularity of control The proposed model solves the specified problems in the switching models problem, the initial condition calculus and the unity of the order models. Continuous and discrete phenomena are represented in Linear hybrid models, defined with defined eighth-tuple parameters to model different types of hybrid phenomena. Applying a transformation over the state vector : for LTI system we obtain from a two-dimensional SS a single parameter, alpha, which still maintains the dynamical information. Combining this parameter with the system output, a complete description of the system is obtained in a form of a graph in polar representation. Using Tagaki-Sugeno type III is a fuzzy model which include linear time invariant LTI models for each local model, the fuzzyfication of different LTI local model gives as a result a non-linear time invariant model. In our case the output and the alpha measure govern the membership function. Hybrid systems control is a huge task, the processes need to be guided from the Starting point to the desired End point, passing a through of different specific states and points in the trajectory. The system can be structured in different levels of abstraction and the control in three layers for the Hybrid systems from planning the process to produce the actions, these are the planning, the process and control layer. In this case the algorithms will be applied to robotics ¡V a domain where improvements are well accepted ¡V it is expected to find a simple repetitive processes for which the extra effort in complexity can be compensated by some cost reductions. It may be also interesting to implement some control optimisation to processes such as fuel injection, DC-DC converters etc. In order to apply the RW theory of discrete event systems on a Hybrid system, we must abstract the continuous signals and to project the events generated for these signals, to obtain new sets of observable and controllable events. Ramadge & Wonham¡¦s theory along with the TCT software give a Controllable Sublanguage of the legal language generated for a Discrete Event System (DES). Continuous abstraction transforms predicates over continuous variables into controllable or uncontrollable events, and modifies the set of uncontrollable, controllable observable and unobservable events. Continuous signals produce into the system virtual events, when this crosses the bound limits. If this event is deterministic, they can be projected. It is necessary to determine the controllability of this event, in order to assign this to the corresponding set, , controllable, uncontrollable, observable and unobservable set of events. Find optimal trajectories in order to minimise some cost function is the goal of the modelling procedure. Mathematical model for the system allows the user to apply mathematical techniques over this expression. These possibilities are, to minimise a specific cost function, to obtain optimal controllers and to approximate a specific trajectory. The combination of the Dynamic Programming with Bellman Principle of optimality, give us the procedure to solve the minimum time trajectory for Hybrid systems. The problem is greater when there exists interaction between adjacent states. In Hybrid systems the problem is to determine the partial set points to be applied at the local models. Optimal controller can be implemented in each local model in order to assure the minimisation of the local costs. The solution of this problem needs to give us the trajectory to follow the system. Trajectory marked by a set of set points to force the system to passing over them. Several ways are possible to drive the system from the Starting point Xi to the End point Xf. Different ways are interesting in: dynamic sense, minimum states, approximation at set points, etc. These ways need to be safe and viable and RchW. And only one of them must to be applied, normally the best, which minimises the proposed cost function. A Reachable Way, this means the controllable way and safe, will be evaluated in order to obtain which one minimises the cost function. Contribution of this work is a complete framework to work with the majority Hybrid systems, the procedures to model, control and supervise are defined and explained and its use is demonstrated. Also explained is the procedure to model the systems to be analysed for automatic verification. Great improvements were obtained by using this methodology in comparison to using other piecewise linear approximations. It is demonstrated in particular cases this methodology can provide best approximation. The most important contribution of this work, is the Alpha approximation for non-linear systems with high dynamics While this kind of process is not typical, but in this case the Alpha approximation is the best linear approximation to use, and give a compact representation.
Resumo:
This paper develops fuzzy methods for control of the rotary inverted pendulum, an underactuated mechanical system. Two control laws are presented, one for swing up and another for the stabilization. The pendulum is swung up from the vertical down stable position to the upward unstable position in a controlled trajectory. The rules for the swing up are heuristically written such that each swing results in greater energy build up. The stabilization is achieved by mapping a stabilizing LQR control law to two fuzzy inference engines, which reduces the computational load compared with using a single fuzzy inference engine. The robustness of the balancing control is tested by attaching a bottle of water at the tip of the pendulum.
Resumo:
The purpose of this paper is to design a control law for continuous systems with Boolean inputs allowing the output to track a desired trajectory. Such systems are controlled by items of commutation. This type of systems, with Boolean inputs, has found increasing use in the electric industry. Power supplies include such systems and a power converter represents one of theses systems. For instance, in power electronics the control variable is the switching OFF and ON of components such as thyristors or transistors. In this paper, a method is proposed for the designing of a control law in state space for such systems. This approach is implemented in simulation for the control of an electronic circuit.
Resumo:
A three degrees of freedom industrial robot is controlled by applying PID self-tuning (PID/ST) controllers. This control is considered as a corrective term to a nominal value, centrally computed from an inaccurate and/ or simplified dynamic model. An identification scheme on an assumed linear plant describing the deviation from the desired trajectory is employed in order to tune the controller coefficients and thus accomplish a behaviour prescribed through a desired pole placement. A salient feature of our approach is the decentralized nature of the controllers producing the corrective term for each joint. This opens the way to practical implementation, as recent computing requirement calculations for similar set-ups have shown in the literature. Numerical results are presented.
Resumo:
Recursive Learning Control (RLC) has the potential to significantly reduce the tracking error in many repetitive trajectory applications. This paper presents an application of RLC to a soil testing load frame where non-adaptive techniques struggle with the highly nonlinear nature of soil. The main purpose of the controller is to apply a sinusoidal force reference trajectory on a soil sample with a high degree of accuracy and repeatability. The controller uses a feedforward control structure, recursive least squares adaptation algorithm and RLC to compensate for periodic errors. Tracking error is reduced and stability is maintained across various soil sample responses.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents the linear optimal control technique for reducing the chaotic movement of the micro-electro-mechanical Comb Drive system to a small periodic orbit. We analyze the non-linear dynamics in a micro-electro-mechanical Comb Drive and demonstrated that this model has a chaotic behavior. Chaos control problems consist of attempts to stabilize a chaotic system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. This technique is applied in analyzes the nonlinear dynamics in an MEMS Comb drive. The simulation results show the identification by linear optimal control is very effective.
Resumo:
In this work a switching feedback controller for stick-slip compensation of a 2-DOF mass-spring-belt system which interacts with an energy source of limited power supply (non-ideal case) is developed. The system presents an oscillatory behavior due to the stick-slip friction. As the system equilibrium for a conventional feedback controller is not the origin, a switching control law combining a state feedback term and a discontinuous term is proposed to regulate the position of the mass. The problem of tracking a desired periodic trajectory is also considered. The feedback system is robust with respect to the friction force that is assumed to be within known upper and lower bounds.
Resumo:
In this work, we deal with a micro electromechanical system (MEMS), represented by a micro-accelerometer. Through numerical simulations, it was found that for certain parameters, the system has a chaotic behavior. The chaotic behaviors in a fractional order are also studied numerically, by historical time and phase portraits, and the results are validated by the existence of positive maximal Lyapunov exponent. Three control strategies are used for controlling the trajectory of the system: State Dependent Riccati Equation (SDRE) Control, Optimal Linear Feedback Control, and Fuzzy Sliding Mode Control. The controls proved effective in controlling the trajectory of the system studied and robust in the presence of parametric errors.
Resumo:
This paper presented the particle swarm optimization approach for nonlinear system identification and for reducing the oscillatory movement of the nonlinear systems to periodic orbits. We analyzes the non-linear dynamics in an oscillator mechanical and demonstrated that this model has a chaotic behavior. Chaos control problems consist of attempts to stabilize a chaotic system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. This approaches is applied in analyzes the nonlinear dynamics in an oscillator mechanical. The simulation results show the identification by particle swarm optimization is very effective.