617 resultados para tracers
Resumo:
Este estudo teve como objetivo principal utilizar os teores de elementos-traço e análise isotópica de Pb (204Pb,206Pb,207Pb,208Pb) como ferramentas na caracterização da poluição da Baía de Sepetiba-RJ. As coletas de sedimento superficiais de fundo foram realizadas em três campanhas, em novembro de 2010, no setor oeste da Baía de Sepetiba RJ. A malha amostral é composta por 66 amostras (BSEP 001 a BSEP 066) coletadas com busca-fundo Van Veen. O pré-processamento das amostras ocorreu no Laboratório Geológico de Preparação de Amostras do Departamento de Geologia da Universidade do Estado do Rio de Janeiro. A digestão parcial das amostras de sedimento (< 0.072 mm) para obtenção do teor parcial dos elementos-traço (Ag, As, Cd, Co, Cr, Cu, Li, Mn, Ni, Pb, Sr, U, Zn) e de isótopo de Pb (lixiviação) foi executada no Laboratório de Geoquímica Analítica do Instituto de Geociências da UNICAMP e a leitura foi executada através do ICP-MS. Já as análises das concentrações totais dos elementos-traço (inclusive, Hg) e de isótopos de Pb (dissolução total) foram realizadas no laboratório ACTLABS (Ontário-Canadá) através do ICP Varian Vista. As leituras isotópicas foram feitas somente nas amostras que apresentaram concentrações parciais de Pb, acima de 0,5 g/g, totalizando 21 estações. Pôde-se constatar a existência de um enriquecimento de elementos-traço no setor oeste da Baía de Sepetiba. As médias dos teores totais de Ag (0,4 g/g), Cd (0,76 g/g), Cu (62,59 g/g), Li (43,29 g/g), Ni (16,65 g/g), Pb (20,08 g/g), Sr (389,64 g/g) e Zn (184,82 g/g) excederam os limites recomendados ou valores naturais. Isto pode ser reflexo da influência antrópica na região, principalmente relacionada à atividade de dragagem e à permanência dos resíduos de minério da desativada companhia de minério Ingá, na Ilha da Madeira. Os mapas de distribuição da concentração dos metais-traço destacaram a presença de vários sítios de deposição ao longo do setor oeste da baía de Sepetiba, com destaque para a região entre a porção centro oeste da Ilha de Itacuruça e o continente; Saco da Marambaia e Ponta da Pombeba; e porção oeste da Ponta da Marambaia. As razões isotópicas 206Pb/207Pb da área estudada variaram entre 1,163 a 1,259 para dissolução total e 1,1749-1,1877 para técnica de lixiviação, valores considerados como assinaturas de sedimentos pós-industriais ou comparados à assinatura de gasolina. Ainda sobre a técnica de lixiviação, destaca-se que os sedimentos superficiais do setor oeste (206Pb/207Pb: 1,1789) da baía de Sepetiba apresentaram uma assinatura uniforme e menos radiogênica do que setor leste (206Pb/207Pb: 1,2373 e 1,2110) desta baía. Através da assinatura isotópica de Pb encontrada nesta região é possível destacar a pouca contribuição das águas oceânicas para esse sistema, entretanto, a circulação interna intensa das águas da baía permite a homogeneização destas. O emprego destes tipos de ferramentas no monitoramento ambiental da área mostrou-se bastante eficiente, sendo importante a continuidade desta abordagem de pesquisa a fim de auxiliar na implementação de um plano de manejo local.
Resumo:
Os ambientes costeiros vem sofrendo impactos devido a ocupação humana, um dos principais efeitos está na alteração da ciclagem de matéria orgânica (MO) na zona costeira. Para investigar as principais fontes de MO e avaliar como a atividade humana tem alterado a composição da MO sedimentar na baía da Ilha Grande (BIG), quatro testemunhos sedimentares (Abraão, Saco do Céu, TEBIG e Marina Piratas) foram datados e analisados para carbono orgânico, nitrogênio total, teor de finos, esteróis e n-álcoois. Os resultados indicam maiores contribuições de matéria orgânica alóctone nos testemunhos da enseada de Abraão e principalmente do Saco do Céu, estes testemunhos são enriquecidos em carbono orgânico e sedimentos finos, em comparação com os sedimentos coletados nas proximidades do TEBIG e da Marina Piratas. A partir dos anos de 1950 algumas alterações, como o incremento da contribuição fitoplanctônica,são observadas nos testemunhos foram indicadas pela Análise de Componentes Principais (PCA), destaca-se nesta época a acentuada mudança que ocorreu nas características granulométricas do testemunho da Marina Piratas. Estas alterações são efeitos indiretos da ação do homem que devido ao elevado crescimento populacional vem poluindo corpos dágua da região e destruindo ecossistemas de elevada importância como manguezais. No entanto através da análises dos marcadores de esgoto foi observado que a influência de MO de origem fecal nos sedimentos é muito pequena e cresceu muito pouco nas últimas décadas. Em conjunto com a elevada cobertura vegetal da região, os elevados índices pluviométricos regionais auxiliam a carrear grandes quantidades de material terrígeno para os sedimentos da baía como indicado pela predomínio de n-álcoois de cadeias longas
Resumo:
耕作侵蚀是国际上新近开展的一个研究领域。为了对中国黄土地区的耕作侵蚀规律进行定量描述 ,采用施放小立方块作为示踪材料进行耕作试验及测量来示踪和监测土壤运动 ,并通过相关分析与理论推导 ,对该地区的耕作侵蚀进行了模拟 ,获得了能够直接计算出坡面剖面任何一点净侵蚀模数的耕作侵蚀模型 ,结果表明 ,在采用当地由动物牵引的传统犁在坡面上自下而上进行往返横坡等高向下翻土耕作方式下 :1)一次耕作导致的耕层土壤朝坡向方向平均水平运动距离随坡度的变化表现为线性相关 ;2 )一次耕作导致的坡面剖面任何位置耕层断面的净侵蚀模数 ,受土壤容重、耕作深度、土壤与耕作条件决定的系数和地形曲率的影响。
Resumo:
A new theoretical framework of tracer methods is proposed in the present contribution, on the basis of mass conservation. This model is applicable for both artificial and natural tracers. It can be used to calculate the spatial distribution patterns of sediment transport rate, thus providing independent information and verification for the results derived from empirical formulae. For the procedures of the calculation, first, the tracer concentration and topographic maps of two times are obtained. Then, the spatial and temporal changes in the concentration and seabed elevation are calculated, and the boundary conditions required are determined by field observations (such as flow and bedform migration measurements). Finally, based upon eqs. (1) and (13), the transport rate is calculated and expressed as a function of the position over the study area. Further, appropriate modifications to the model may allow the tracer to have different densities and grain size distributions from the bulk sediment.
Resumo:
We applied a primitive equation ocean model to simulate submesoscale activities and processes over the shelf of the northern South China Sea (NSCS) with a one-way nesting technology for downscaling. The temperature and density fields showed that submesoscale activities were ubiquitous in the NSCS shelf. The vertical velocity was considerably enhanced in submesoscale processes and could reach an average of 58 m per day in the subsurface. At this point, the mixed layer depth also was deepened along the front, and the surface kinetic energy also increased with the intense vertical movement induced by submesoscale activity. Thus, submesoscale stirring/mixing is important for tracers, such as temperature, salinity, nutrients, dissolved organic, and inorganic carbon. This result may have implication for climate and biogeochemical investigations.
Resumo:
The surface of the Earth is continuously undergoing changes as a result of weathering-erosion, plate tectonics and volcanic processes. Continental weathering-erosion with its complex rock-water interactions is the central process of global biochemical cycling of elements, and affects the long-term ocean atmosphere budget of carbon dioxide both through the consumption of carbonic acid during silicate weathering and through changes in the weathering and burial rates of organic carbon. Rates of the weathering-erosion depend on a variety of factors, in particular rock properties and chemical composition, climate (especially rainfall), structure, and elevation. They are quite variable on a regional scale. Thus, environmental changes in a region could be indicated by the history of weathering-erosion in the region. Recent attention has focused on increased silicate weathering of tectonically uplifted areas in the India-Asia collision zone as a possible cause for falling atmospheric CO_2 levels in the Cenozoic era. The wind blown dust deposits in the Loess Plateau is derived from the arid and semiarid regions in northwestern China, in turn, where the deposits have been derived from the Qinghai-Xizang Plateau and the high mountains around. Therefore, geochemistry of the wind blown loess-paleosol and red clay sequences may provide insight both to paleoenvironmental changes on the Loess Plateau, and to the uplift and weathering-erosion histories of the Qinghai-Xizang Plateau. In this paper, uranium-thorium series nuclides and cosmogenic ~(10)Be have been employed as tracers of weathering intensities and histories of the dust sediments in the Loess Plateau. Major elements, such as Na, Al, Fe etc., are also used to estimate degree of chemical alteration of the dust sediments and to rebuild the history of weathering on the Loess Plateau. First of all, using a low-level HPGe γ-ray detector, we measured U and Th series nuclides in 170 loess and paleosol samples from five sites in the Loess Plateau, going back 2.6 Ma. The results show that ~(238)U activities are disequilibrium with its daughter nuclide ~(230)Th in young loess-paleosol sequence, indicating that weathering was happened both in dust deposition site and in dust source regions. Using concentrations of ~(238)U and ~(232)Th in the samples, we estimated the amounts of ~(238)U leached out of from paleosols due to weathering. Further, based on analyses of ~(230)Th in paleosols deposited in the past ca. 140 ka, we determined when the paleosols weathered in the source regions. We conclude that most of the weathering in the dust-source regions may have occurred during the interglacials before dust deposition.
Resumo:
Cannabinoid receptors are members of the large family of G-protein coupled receptors. Two types of cannabinoid receptor have been discovered: CB1 and CB2. CB1 receptors are localised predominantly in the brain whereas CB2 receptors are more abundant in peripheral nervous system cells. CB1 receptors have been related with a number of disorders, including depression, anxiety, stress, schizophrenia, chronic pain and obesity. For this reason, several cannabinoid ligands were developed as drug candidates. Among these ligands, a prominent position is occupied by SR141716 (Rimonabant), which is a pyrazole derivative with inverse agonist activity discovered by Sanofi-Synthelabo in 1994. This compound was marketed in Europe as an anti-obesity drug, but subsequently withdrawn due to its side-effects. Since the relationship between the CB1 receptors’ functional modification, density and distribution, and the beginning of a pathological state is still not well understood, the development of radio-ligands suitable for in vivo PET (Positron Emission Tomography) functional imaging of CB1 receptors remains an important area of research in medicine and drug development. To date, a few radiotracers have been synthesised and tested in vivo, but most of them afforded unsatisfactory brain imaging results. A handful of radiolabelled CB1 PET ligands have also been submitted to clinical trials in humans. In this PhD Thesis the design, synthesis and characterization of three new classes of potential high-affinity CB1 ligands as candidate PET tracers is described.
Resumo:
Theoretical as well as observational aspects of the s-process nucleosynthesis are reviewed. The classical site-independent s-process model as well as the s-process in massive stars are shortly described. A special attention is paid to the nucleosynthesis taking place in AGB stars and the extra-mixing invoked to explain the production of neutrons in the C-rich layers during the interpulse. We also discuss the nucleosynthesis found in hot AGB stars for which the s-process during the interpulse phase is inhibited, but the one resulting from the large temperatures in the thermal pulse is boosted. We comment on the uncertainties affecting our understanding of the physical mechanisms responsible for a successful s-process. Finally, various types of spectroscopic observations of s-process elements are discussed. © 2005 International Astronomical Union.
Resumo:
Mountaintop mining (MTM) is the primary procedure for surface coal exploration within the central Appalachian region of the eastern United States, and it is known to contaminate streams in local watersheds. In this study, we measured the chemical and isotopic compositions of water samples from MTM-impacted tributaries and streams in the Mud River watershed in West Virginia. We systematically document the isotopic compositions of three major constituents: sulfur isotopes in sulfate (δ(34)SSO4), carbon isotopes in dissolved inorganic carbon (δ(13)CDIC), and strontium isotopes ((87)Sr/(86)Sr). The data show that δ(34)SSO4, δ(13)CDIC, Sr/Ca, and (87)Sr/(86)Sr measured in saline- and selenium-rich MTM impacted tributaries are distinguishable from those of the surface water upstream of mining impacts. These tracers can therefore be used to delineate and quantify the impact of MTM in watersheds. High Sr/Ca and low (87)Sr/(86)Sr characterize tributaries that originated from active MTM areas, while tributaries from reclaimed MTM areas had low Sr/Ca and high (87)Sr/(86)Sr. Leaching experiments of rocks from the watershed show that pyrite oxidation and carbonate dissolution control the solute chemistry with distinct (87)Sr/(86)Sr ratios characterizing different rock sources. We propose that MTM operations that access the deeper Kanawha Formation generate residual mined rocks in valley fills from which effluents with distinctive (87)Sr/(86)Sr and Sr/Ca imprints affect the quality of the Appalachian watersheds.
Resumo:
Aquifer denitrification is among the most poorly constrained fluxes in global and regional nitrogen budgets. The few direct measurements of denitrification in groundwaters provide limited information about its spatial and temporal variability, particularly at the scale of whole aquifers. Uncertainty in estimates of denitrification may also lead to underestimates of its effect on isotopic signatures of inorganic N, and thereby confound the inference of N source from these data. In this study, our objectives are to quantify the magnitude and variability of denitrification in the Upper Floridan Aquifer (UFA) and evaluate its effect on N isotopic signatures at the regional scale. Using dual noble gas tracers (Ne, Ar) to generate physical predictions of N2 gas concentrations for 112 observations from 61 UFA springs, we show that excess (i.e. denitrification-derived) N2 is highly variable in space and inversely correlated with dissolved oxygen (O2). Negative relationships between O2 and δ15N NO3 across a larger dataset of 113 springs, well-constrained isotopic fractionation coefficients, and strong 15N:18O covariation further support inferences of denitrification in this uniquely organic-matter-poor system. Despite relatively low average rates, denitrification accounted for 32 % of estimated aquifer N inputs across all sampled UFA springs. Back-calculations of source δ15N NO3 based on denitrification progression suggest that isotopically-enriched nitrate (NO3-) in many springs of the UFA reflects groundwater denitrification rather than urban- or animal-derived inputs. © Author(s) 2012.
Resumo:
The marine cyanobacterium Prochlorococcus, the most abundant phototrophic organism on Earth, numerically dominates the phytoplankton in nitrogen (N)-depleted oceanic gyres. Alongside inorganic N sources such as nitrite and ammonium, natural populations of this genus also acquire organic N, specifically amino acids. Here, we investigated using isotopic tracer and flow cytometric cell sorting techniques whether amino acid uptake by Prochlorococcus is subject to a diel rhythmicity, and if so, whether this was linked to a specific cell cycle stage. We observed, in contrast to diurnally similar methionine uptake rates by Synechococcus cells, obvious diurnal rhythms in methionine uptake by Prochlorococcus cells in the tropical Atlantic. These rhythms were confirmed using reproducible cyclostat experiments with a light-synchronized axenic Prochlorococcus (PCC9511 strain) culture and S-35-methionine and H-3-leucine tracers. Cells acquired the tracers at lower rates around dawn and higher rates around dusk despite > 10(4) times higher concentration of ammonium in the medium, presumably because amino acids can be directly incorporated into protein. Leucine uptake rates by cells in the S+G(2) cell cycle stage were consistently 2.2 times higher than those of cells at the G(1) stage. Furthermore, S+G(2) cells upregulated amino acid uptake 3.5 times from dawn to dusk to boost protein synthesis prior to cell division. Because Prochlorococcus populations can account from 13% at midday to 42% at dusk of total microbial uptake of methionine and probably of other amino acids in N-depleted oceanic waters, this genus exerts diurnally variable, strong competitive pressure on other bacterioplankton populations.
Resumo:
Field campaigns are instrumental in providing ground truth for understanding and modeling global ocean biogeochemical budgets. A survey however can only inspect a fraction of the global oceans, typically a region hundreds of kilometers wide for a temporal window of the order of (at most) several weeks. This spatiotemporal domain is also the one in which the mesoscale activity induces through horizontal stirring a strong variability in the biogeochemical tracers, with ephemeral, local contrasts which can easily mask the regional and seasonal gradients. Therefore, whenever local in situ measures are used to infer larger-scale budgets, one faces the challenge of identifying the mesoscale structuring effect, if not simply to filter it out. In the case of the KEOPS2 investigation of biogeochemical responses to natural iron fertilization, this problem was tackled by designing an adaptive sampling strategy based on regionally optimized multisatellite products analyzed in real time by specifically designed Lagrangian diagnostics. This strategy identified the different mesoscale and stirring structures present in the region and tracked the dynamical frontiers among them. It also enabled back trajectories for the ship-sampled stations to be estimated, providing important insights into the timing and pathways of iron supply, which were explored further using a model based on first-order iron removal. This context was essential for the interpretation of the field results. The mesoscale circulation-based strategy was also validated post-cruise by comparing the Lagrangian maps derived from satellites with the patterns of more than one hundred drifters, including some adaptively released during KEOPS2 and a subsequent research voyage. The KEOPS2 strategy was adapted to the specific biogeochemical characteristics of the region, but its principles are general and will be useful for future in situ biogeochemical surveys.
Resumo:
Ocean biogeochemistry (OBGC) models span a wide variety of complexities, including highly simplified nutrient-restoring schemes, nutrient–phytoplankton–zooplankton–detritus (NPZD) models that crudely represent the marine biota, models that represent a broader trophic structure by grouping organisms as plankton functional types (PFTs) based on their biogeochemical role (dynamic green ocean models) and ecosystem models that group organisms by ecological function and trait. OBGC models are now integral components of Earth system models (ESMs), but they compete for computing resources with higher resolution dynamical setups and with other components such as atmospheric chemistry and terrestrial vegetation schemes. As such, the choice of OBGC in ESMs needs to balance model complexity and realism alongside relative computing cost. Here we present an intercomparison of six OBGC models that were candidates for implementation within the next UK Earth system model (UKESM1). The models cover a large range of biological complexity (from 7 to 57 tracers) but all include representations of at least the nitrogen, carbon, alkalinity and oxygen cycles. Each OBGC model was coupled to the ocean general circulation model Nucleus for European Modelling of the Ocean (NEMO) and results from physically identical hindcast simulations were compared. Model skill was evaluated for biogeochemical metrics of global-scale bulk properties using conventional statistical techniques. The computing cost of each model was also measured in standardised tests run at two resource levels. No model is shown to consistently outperform all other models across all metrics. Nonetheless, the simpler models are broadly closer to observations across a number of fields and thus offer a high-efficiency option for ESMs that prioritise high-resolution climate dynamics. However, simpler models provide limited insight into more complex marine biogeochemical processes and ecosystem pathways, and a parallel approach of low-resolution climate dynamics and high-complexity biogeochemistry is desirable in order to provide additional insights into biogeochemistry–climate interactions.
Resumo:
The ESA Data User Element (DUE) funded GlobCurrent project (http://www.globcurrent.org) aims to: (i) advance the quantitative estimation of ocean surface currents from satellite sensor synergy; and (ii) demonstrate impact in user-led scientific, operational and commercial applications that, in turn, will improve and strengthen the uptake of satellite measurements. Today, a synergetic approach for quantitative analysis can build on high-resolution imaging radar and spectrometer data, infrared radiometer data and radar altimeter measurements. It will further integrate Sentinel-3 in combination with Sentinel-1 SAR data. From existing and past missions, it is often demonstrated that sharp gradients in the sea surface temperature (SST) field and the ocean surface chlorophyll-a distribution are spatially correlated with the sea surface roughness anomaly fields at small spatial scales, in the sub-mesocale (1-10 km) to the mesoscale (30-80 km). At the larger mesoscale range (>50 km), information derived from radar altimeters often depict the presence of coherent structures and eddies. The variability often appears largest in regions where the intense surface current regimes (>100 - 200 km) are found. These 2-dimensional structures manifested in the satellite observations represent evidence of the upper ocean (~100-200 m) dynamics. Whereas the quasi geostrophic assumption is valid for the upper ocean dynamics at the larger scale (>100 km), possible triggering mechanisms for the expressions at the mesoscale-to-submesoscale may include spiraling tracers of inertial motion and the interaction of the wind-driven Ekman layer with the quasi-geostrophic current field. This latter, in turn, produces bands of downwelling (convergence) and upwelling (divergence) near fronts. A regular utilization of the sensor synergy approach with the combination of Sentinel-3 and Sentinel-1 will provide a highly valuable data set for further research and development to better relate the 2-dimensional surface expressions and the upper ocean dynamics.
Resumo:
A new approach to compute along-track velocity components by combining altimetry-based across-track components and front directions from remote sensing maps of surface chlorophyll concentration is proposed. The analysis focuses on the South Madagascar region characterized by the strong East Madagascar Current and sharp gradients of surface tracers. The results are compared against in-situ observations from three moorings along the Jason-1 track 196. Accurate information on the total velocity direction is the key factor for obtaining accurate estimates of along-track velocities. Although with some limitations, surface tracer fronts can be successfully used to retrieve such information.