867 resultados para theta rhythm
Resumo:
Breu ressenya de la pel·lícula "Rhythm is it!"
Resumo:
The theta-logistic is a widely used generalisation of the logistic model of regulated biological processes which is used in particular to model population regulation. Then the parameter theta gives the shape of the relationship between per-capita population growth rate and population size. Estimation of theta from population counts is however subject to bias, particularly when there are measurement errors. Here we identify factors disposing towards accurate estimation of theta by simulation of populations regulated according to the theta-logistic model. Factors investigated were measurement error, environmental perturbation and length of time series. Large measurement errors bias estimates of theta towards zero. Where estimated theta is close to zero, the estimated annual return rate may help resolve whether this is due to bias. Environmental perturbations help yield unbiased estimates of theta. Where environmental perturbations are large, estimates of theta are likely to be reliable even when measurement errors are also large. By contrast where the environment is relatively constant, unbiased estimates of theta can only be obtained if populations are counted precisely Our results have practical conclusions for the design of long-term population surveys. Estimation of the precision of population counts would be valuable, and could be achieved in practice by repeating counts in at least some years. Increasing the length of time series beyond ten or 20 years yields only small benefits. if populations are measured with appropriate accuracy, given the level of environmental perturbation, unbiased estimates can be obtained from relatively short censuses. These conclusions are optimistic for estimation of theta. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
This paper examines the normal force between two opposing polyelectrolyte brushes and the interpenetration of their chains that is responsible for sliding friction. It focuses on the special case of semi-dilute brushes in a salt-free theta solvent, for which Zhulina and Borisov [J. Chem. Phys., {\bf 107}, 5952, (1997)] have derived analytical predictions using the classical strong-stretching theory (SST) introduced by Semenov and developed by Milner, Witten and Cates. Interestingly, the SST predicts that the brushes contract maintaining a polymer-free gap as they are compressed together, which provides an explanation for the ultra-low frictional forces observed in experiment. We examine the degree to which the SST predictions are affected by chain fluctuations by employing self-consistent field theory (SCFT). While the normal force is relatively unaffected, fluctuations are found to have a strong impact on brush interpenetration. Even still, the contraction of the brushes does significantly prolong the onset of interpenetration, implying that a sizeable normal force can be achieved before the sliding friction becomes significant.
Resumo:
Classical strong-stretching theory (SST) predicts that, as opposing polyelectrolyte brushes are compressed together in a salt-free theta solvent, they contract so as to maintain a finite polymer-free gap, which offers a potential explanation for the ultra-low frictional forces observed in experiments even with the application of large normal forces. However, the SST ignores chain fluctuations, which would tend to close the gap resulting in physical contact and in turn significant friction. In a preceding study, we examined the effect of fluctuations using self-consistent field theory (SCFT) and illustrated that high normal forces can still be applied before the gap is destroyed. We now look at the effect of adding salt. It is found to reduce the long-range interaction between the brushes but has little effect on the short-range part, provided the concentration does not enter the salted-brush regime. Consequently, the maximum normal force between two planar brushes at the point of contact is remarkably unaffected by salt. For the crossed-cylinder geometry commonly used in experiments, however, there is a gradual reduction because in this case the long-range part of the interaction contributes to the maximum normal force.
Resumo:
Despite many decades investigating scalp recordable 8–13-Hz (alpha) electroencephalographic activity, no consensus has yet emerged regarding its physiological origins nor its functional role in cognition. Here we outline a detailed, physiologically meaningful, theory for the genesis of this rhythm that may provide important clues to its functional role. In particular we find that electroencephalographically plausible model dynamics, obtained with physiological admissible parameterisations, reveals a cortex perched on the brink of stability, which when perturbed gives rise to a range of unanticipated complex dynamics that include 40-Hz (gamma) activity. Preliminary experimental evidence, involving the detection of weak nonlinearity in resting EEG using an extension of the well-known surrogate data method, suggests that nonlinear (deterministic) dynamics are more likely to be associated with weakly damped alpha activity. Thus rather than the “alpha rhythm” being an idling rhythm it may be more profitable to conceive it as a readiness rhythm.
Resumo:
Across five experiments, the temporal regularity and content of an irrelevant speech stream were varied and their effects on a serial recall task examined. Variations of the content, but not the rhythm, of the irrelevant speech stimuli reliably disrupted serial recall performance in all experiments. Bayesian analyses supported the null hypothesis over the hypothesis that irregular rhythms would disrupt memory to a greater extent than regular rhythms. Pooling the data in a combined analysis revealed that regular presentation of the irrelevant speech was significantly more disruptive to serial recall than irregular presentation. These results are consistent with the idea that auditory distraction is sensitive to both intra-item and inter-item relations and challenge an orienting-based account of auditory distraction.