954 resultados para thermochemical and structural correlations
Resumo:
The distribution of single-particle strength in nuclear matter is calculated for a realistic nucleon-nucleon interaction. The influence of the short-range repulsion and the tensor component of the nuclear force on the spectral functions is to move approximately 13% of the total strength for all single-particle states beyond 100 MeV into the particle domain. This result is related to the abundantly observed quenching phenomena in nuclei which include the reduction of spectroscopic factors observed in (e,ep) reactions and the missing strength in low energy response functions.
Resumo:
The Technologies setting at Agricultural production system have the main characteristics the vertical productivity, reduced costs, soil physical, chemical and biological improvement to promote production sustainable growth. Thus, the study aimed to determine the variability and the linear and special correlations between the plant and soil attributes in order to select and indicate good representation of soil physical quality for forage productivity. In the growing season of 2006, on the Fazenda Bonança in Pereira Barreto (SP), the productivity of autumn corn forage (FDM) in an irrigated no-tillage system and the soil physical properties were analyzed. The purpose was to study the variability and the linear and spatial correlations between the plant and soil properties, to select an indicator of soil physical quality related to corn forage yield. A geostatistical grid was installed to collect soil and plant data, with 125 sampling points in an area of 2,500 m². The results show that the studied properties did not vary randomly and that data variability was low to very high, with well-defined spatial patterns, ranging from 7.8 to 38.0 m. On the other hand, the linear correlation between the plant and the soil properties was low and highly significant. The pairs forage dry matter versus microporosity and stem diameter versus bulk density were best correlated in the 0-0.10 m layer, while the other pairs - forage dry matter versus macro - and total porosity - were inversely correlated in the same layer. However, from the spatial point of view, there was a high inverse correlation between forage dry matter with microporosity, so that microporosity in the 0-0.10 m layer can be considered a good indicator of soil physical quality, with a view to corn forage yield.
Resumo:
The hypernetted-chain formalism for boson-boson mixtures described by an extended Jastrow correlated wave function is derived, taking into account elementary diagrams and triplet correlations. The energy of an ideal boson 3He-4He mixture is computed for low values of the 3He concentration. The zero-3He-concentration limit provides a 3He chemical potential in good agreement with the experimental value, when a McMillan two-body correlation factor and the Lennard-Jones potential are adopted. If the Euler equations for the two-body correlation factors are solved in presence of triplet correlations, the agreement is again improved. At the experimental 4He equilibrium density, the 3He chemical potential turns out to be -2.58 K, to be compared with the experimental value, -2.79 K.
Resumo:
The influence of radio frequency (rf) power and pressure on deposition rate and structural properties of hydrogenated amorphous silicon (a-Si:H) thin films, prepared by rf glow discharge decomposition of silane, have been studied by phase modulated ellipsometry and Fourier transform infrared spectroscopy. It has been found two pressure regions separated by a threshold value around 20 Pa where the deposition rate increases suddenly. This behavior is more marked as rf power rises and reflects the transition between two rf discharges regimes. The best quality films have been obtained at low pressure and at low rf power but with deposition rates below 0.2 nm/s. In the high pressure region, the enhancement of deposition rate as rf power increases first gives rise to a reduction of film density and an increase of content of hydrogen bonded in polyhydride form because of plasma polymerization reactions. Further rise of rf power leads to a decrease of polyhydride bonding and the material density remains unchanged, thus allowing the growth of a-Si:H films at deposition rates above 1 nm/s without any important detriment of material quality. This overcoming of deposition rate limitation has been ascribed to the beneficial effects of ion bombardment on the a-Si:H growing surface by enhancing the surface mobility of adsorbed reactive species and by eliminating hydrogen bonded in polyhydride configurations.
Resumo:
The urate transporter, GLUT9, is responsible for the basolateral transport of urate in the proximal tubule of human kidneys and in the placenta, playing a central role in uric acid homeostasis. GLUT9 shares the least homology with other members of the glucose transporter family, especially with the glucose transporting members GLUT1-4 and is the only member of the GLUT family to transport urate. The recently published high-resolution structure of XylE, a bacterial D-xylose transporting homologue, yields new insights into the structural foundation of this GLUT family of proteins. While this represents a huge milestone, it is unclear if human GLUT9 can benefit from this advancement through subsequent structural based targeting and mutagenesis. Little progress has been made toward understanding the mechanism of GLUT9 since its discovery in 2000. Before work can begin on resolving the mechanisms of urate transport we must determine methods to express, purify and analyze hGLUT9 using a model system adept in expressing human membrane proteins. Here, we describe the surface expression, purification and isolation of monomeric protein, and functional analysis of recombinant hGLUT9 using the Xenopus laevis oocyte system. In addition, we generated a new homology-based high-resolution model of hGLUT9 from the XylE crystal structure and utilized our purified protein to generate a low-resolution single particle reconstruction. Interestingly, we demonstrate that the functional protein extracted from the Xenopus system fits well with the homology-based model allowing us to generate the predicted urate-binding pocket and pave a path for subsequent mutagenesis and structure-function studies.
Resumo:
The clinical data of 180 episodes of upper gastrointestinal bleeding in 168 patients with cirrhosis of the liver are examined. The source of bleeding had been determined by early endoscopy in all cases. In men under the age of 50 years, and without symptoms of liver failure, bleeding was due to ruptured gastro-oesophageal varices in 84% of cases. Severe liver failure was associated with acute lesions of gastric mucosa in many cases. No presumptive diagnosis of the source of haemorrhage could be based on the examination of other clinical data (presence of ascites, mode of presentation and pattern of bleeding, history of ulcer disease, alcoholism, and previous medication.
Resumo:
The clinical data of 180 episodes of upper gastrointestinal bleeding in 168 patients with cirrhosis of the liver are examined. The source of bleeding had been determined by early endoscopy in all cases. In men under the age of 50 years, and without symptoms of liver failure, bleeding was due to ruptured gastro-oesophageal varices in 84% of cases. Severe liver failure was associated with acute lesions of gastric mucosa in many cases. No presumptive diagnosis of the source of haemorrhage could be based on the examination of other clinical data (presence of ascites, mode of presentation and pattern of bleeding, history of ulcer disease, alcoholism, and previous medication.
Resumo:
Rockfall is an extremely rapid process involving long travel distances. Due to these features, when an event occurs, the ability to take evasive action is practically zero and, thus, the risk of injury or loss of life is high. Damage to buildings and infrastructure is quite likely. In many cases, therefore, suitable protection measures are necessary. This contribution provides an overview of previous and current research on the main topics related to rockfall. It covers the onset of rockfall and runout modelling approaches, as well as hazard zoning and protection measures. It is the aim of this article to provide an in-depth knowledge base for researchers and practitioners involved in projects dealing with the rockfall protection of infrastructures, who may work in the fields of civil or environmental engineering, risk and safety, the earth and natural sciences.
Resumo:
In previous studies we showed that the wild-type histamine H(2) receptor stably expressed in Chinese hamster ovary cells is constitutively active. Because constitutive activity of the H(2) receptor is already found at low expression levels (300 fmol/mg protein) this receptor is a relatively unique member of the G-protein-coupled receptor (GPCR) family and a useful tool for studying GPCR activation. In this study the role of the highly conserved DRY motif in activation of the H(2) receptor was investigated. Mutation of the aspartate 115 residue in this motif resulted in H(2) receptors with high constitutive activity, increased agonist affinity, and increased signaling properties. In addition, the mutant receptors were shown to be highly structurally instable. Mutation of the arginine 116 residue in the DRY motif resulted also in a highly structurally instable receptor; expression of the receptor could only be detected after stabilization with either an agonist or inverse agonist. Moreover, the agonist affinity at the Arg-116 mutant receptors was increased, whereas the signal transduction properties of these receptors were decreased. We conclude that the Arg-116 mutant receptors can adopt an active conformation but have a decreased ability to couple to or activate the G(s)-protein. This study examines the pivotal role of the aspartate and arginine residues of the DRY motif in GPCR function. Disruption of receptor stabilizing constraints by mutation in the DRY motif leads to the formation of active GPCR conformations, but concomitantly to GPCR instability.
Resumo:
We study the effects of the adoption of new agricultural technologies on structural transformation. To guide empirical work, we present a simple model where the effect of agriculturalproductivity on industrial development depends on the factor bias of technical change. We testthe predictions of the model by studying the introduction of genetically engineered soybeanseeds in Brazil, which had heterogeneous effects on agricultural productivity across areas withdifferent soil and weather characteristics. We find that technical change in soy production wasstrongly labor saving and lead to industrial growth, as predicted by the model.
Resumo:
We first introduce structural realism as a position in the metaphysics of science, pointing out the way in which this position replaces intrinsic properties with relations so that it amounts to a holistic in contrast to an atomistic metaphysics. We argue in favour of a moderate version of structural realism that puts objects and relations on the same ontological footing and assess the general philosophical arguments for this position. The second section shows how structural realism gains support from quantum physics. The third section explains how structural realism can be applied to the metaphysics of space-time.
Resumo:
We first introduce structural realism as a position in the metaphysics of science, pointing out the way in which this position replaces intrinsic properties with relations so that it amounts to a holistic in contrast to an atomistic metaphysics. We argue in favour of a moderate version of structural realism that puts objects and relations on the same ontological footing and assess the general philosophical arguments for this position. The second section shows how structural realism gains support from quantum physics. The third section explains how structural realism can be applied to the metaphysics of space-time.