935 resultados para thermo-dynamical
Resumo:
We study the dynamics of a one-dimensional lattice model of hard core bosons which is initially in a superfluid phase with a current being induced by applying a twist at the boundary. Subsequently, the twist is removed, and the system is subjected to periodic delta-function kicks in the staggered on-site potential. We present analytical expressions for the current and work done in the limit of an infinite number of kicks. Using these, we show that the current (work done) exhibits a number of dips (peaks) as a function of the driving frequency and eventually saturates to zero (a finite value) in the limit of large frequency. The vanishing of the current (and the saturation of the work done) can be attributed to a dynamic localization of the hard core bosons occurring as a consequence of the periodic driving. Remarkably, we show that for some specific values of the driving amplitude, the localization occurs for any value of the driving frequency. Moreover, starting from a half-filled lattice of hard core bosons with the particles localized in the central region, we show that the spreading of the particles occurs in a light-cone-like region with a group velocity that vanishes when the system is dynamically localized.
Resumo:
We develop an approach that combines the power of nonlinear dynamics with the evolution equations for the mobile and immobile dislocation densities and force to explain force fluctuations in nanoindentation experiments. The model includes nucleation, multiplication, and propagation thresholds for mobile dislocations, and other well known dislocation transformation mechanisms. The model predicts all the generic features of nanoindentation such as the Hertzian elastic branch followed by several force drops of decreasing magnitudes, and residual plasticity after unloading. The stress corresponding to the elastic force maximum is close to the yield stress of an ideal solid. The predicted values for all the quantities are close to those reported by experiments. Our model allows us to address the indentation-size effect including the ambiguity in defining the hardness in the force drop dominated regime. At large indentation depths, the hardness remains nearly constant with a marginal decreasing trend.
Resumo:
Despite decades of research, it remains to be established whether the transformation of a liquid into a glass is fundamentally thermodynamic or dynamic in origin. Although observations of growing length scales are consistent with thermodynamic perspectives, the purely dynamic approach of the Dynamical Facilitation (DF) theory lacks experimental support. Further, for vitrification induced by randomly freezing a subset of particles in the liquid phase, simulations support the existence of an underlying thermodynamic phase transition, whereas the DF theory remains unexplored. Here, using video microscopy and holographic optical tweezers, we show that DF in a colloidal glass-forming liquid grows with density as well as the fraction of pinned particles. In addition, we observe that heterogeneous dynamics in the form of string-like cooperative motion emerges naturally within the framework of facilitation. Our findings suggest that a deeper understanding of the glass transition necessitates an amalgamation of existing theoretical approaches.
Resumo:
One of the greatest challenges in contemporary condensed matter physics is to ascertain whether the formation of glasses from liquids is fundamentally thermodynamic or dynamic in origin. Although the thermodynamic paradigm has dominated theoretical research for decades, the purely kinetic perspective of the dynamical facilitation (DF) theory has attained prominence in recent times. In particular, recent experiments and simulations have highlighted the importance of facilitation using simple model systems composed of spherical particles. However, an overwhelming majority of liquids possess anisotropy in particle shape and interactions, and it is therefore imperative to examine facilitation in complex glass formers. Here, we apply the DF theory to systems with orientational degrees of freedom as well as anisotropic attractive interactions. By analyzing data from experiments on colloidal ellipsoids, we show that facilitation plays a pivotal role in translational as well as orientational relaxation. Furthermore, we demonstrate that the introduction of attractive interactions leads to spatial decoupling of translational and rotational facilitation, which subsequently results in the decoupling of dynamical heterogeneities. Most strikingly, the DF theory can predict the existence of reentrant glass transitions based on the statistics of localized dynamical events, called excitations, whose duration is substantially smaller than the structural relaxation time. Our findings pave the way for systematically testing the DF approach in complex glass formers and also establish the significance of facilitation in governing structural relaxation in supercooled liquids.
Resumo:
Hydrogen, either in pure form or as a gaseous fuel mixture specie enhances the fuel conversion efficiency and reduce emissions in an internal combustion engine. This is due to the reduction in combustion duration attributed to higher laminar flame speeds. Hydrogen is also expected to increase the engine convective heat flux, attributed (directly or indirectly) to parameters like higher adiabatic flame temperature, laminar flame speed, thermal conductivity and diffusivity and lower flame quenching distance. These factors (adversely) affect the thermo-kinematic response and offset some of the benefits. The current work addresses the influence of mixture hydrogen fraction in syngas on the engine energy balance and the thermo-kinematic response for close to stoichiometric operating conditions. Four different bio-derived syngas compositions with fuel calorific value varying from 3.14 MJ/kg to 7.55 MJ/kg and air fuel mixture hydrogen fraction varying from 7.1% to 14.2% by volume are used. The analysis comprises of (a) use of chemical kinetics simulation package CHEMKIN for quantifying the thermo-physical properties (b) 0-D model for engine in-cylinder analysis and (c) in-cylinder investigations on a two-cylinder engine in open loop cooling mode for quantifying the thermo-kinematic response and engine energy balance. With lower adiabatic flame temperature for Syngas, the in-cylinder heat transfer analysis suggests that temperature has little effect in terms of increasing the heat flux. For typical engine like conditions (700 K and 25 bar at CR of 10), the laminar flame speed for syngas exceeds that of methane (55.5 cm/s) beyond mixture hydrogen fraction of 11% and is attributed to the increase in H based radicals. This leads to a reduction in the effective Lewis number and laminar flame thickness, potentially inducing flame instability and cellularity. Use of a thermodynamic model to assess the isolated influence of thermal conductivity and diffusivity on heat flux suggests an increase in the peak heat flux between 2% and 15% for the lowest (0.420 MW/m(2)) and highest (0.480 MW/m(2)) hydrogen containing syngas over methane (0.415 MW/m(2)) fueled operation. Experimental investigations indicate the engine cooling load for syngas fueled engine is higher by about 7% and 12% as compared to methane fueled operation; the losses are seen to increase with increasing mixture hydrogen fraction. Increase in the gas to electricity efficiency is observed from 18% to 24% as the mixture hydrogen fraction increases from 7.1% to 9.5%. Further increase in mixture hydrogen fraction to 14.2% results in the reduction of efficiency to 23%; argued due to the changes in the initial and terminal stages of combustion. On doubling of mixture hydrogen fraction, the flame kernel development and fast burn phase duration decrease by about 7% and 10% respectively and the terminal combustion duration, corresponding to 90%-98% mass burn, increases by about 23%. This increase in combustion duration arises from the cooling of the near wall mixture in the boundary layer attributed to the presence of hydrogen. The enhancement in engine cooling load and subsequent reduction in the brake thermal efficiency with increasing hydrogen fraction is evident from the engine energy balance along with the cumulative heat release profiles. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Identification of dominant modes is an important step in studying linearly vibrating systems, including flow-induced vibrations. In the presence of uncertainty, when some of the system parameters and the external excitation are modeled as random quantities, this step becomes more difficult. This work is aimed at giving a systematic treatment to this end. The ability to capture the time averaged kinetic energy is chosen as the primary criterion for selection of modes. Accordingly, a methodology is proposed based on the overlap of probability density functions (pdf) of the natural and excitation frequencies, proximity of the natural frequencies of the mean or baseline system, modal participation factor, and stochastic variation of mode shapes in terms of the modes of the baseline system - termed here as statistical modal overlapping. The probabilistic descriptors of the natural frequencies and mode shapes are found by solving a random eigenvalue problem. Three distinct vibration scenarios are considered: (i) undamped arid damped free vibrations of a bladed disk assembly, (ii) forced vibration of a building, and (iii) flutter of a bridge model. Through numerical studies, it is observed that the proposed methodology gives an accurate selection of modes. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A method to weakly correct the solutions of stochastically driven nonlinear dynamical systems, herein numerically approximated through the Eule-Maruyama (EM) time-marching map, is proposed. An essential feature of the method is a change of measures that aims at rendering the EM-approximated solution measurable with respect to the filtration generated by an appropriately defined error process. Using Ito's formula and adopting a Monte Carlo (MC) setup, it is shown that the correction term may be additively applied to the realizations of the numerically integrated trajectories. Numerical evidence, presently gathered via applications of the proposed method to a few nonlinear mechanical oscillators and a semi-discrete form of a 1-D Burger's equation, lends credence to the remarkably improved numerical accuracy of the corrected solutions even with relatively large time step sizes. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
We propose the generation of Standard Model fermion hierarchy by the extension of renormalizable SO(10) GUT with O(N (g) ) family gauge symmetry. In this scenario, Higgs representations of SO(10) also carry family indices and are called Yukawons. Vacuum expectation values of these Yukawon fields break GUT and family symmetry and generate MSSM Yukawa couplings dynamically. We have demonstrated this idea using Higgs irrep, ignoring the contribution of 1 2 0-plet which is, however, required for complete fitting of fermion mass-mixing data. The effective MSSM matter fermion couplings to the light Higgs pair are determined by the null eigenvectors of the MSSM-type Higgs doublet superfield mass matrix . A consistency condition on the doublet (1,2,+/- 1]) mass matrix ( 0) is required to keep one pair of Higgs doublets light in the effective MSSM. We show that the Yukawa structure generated by null eigenvectors of are of generic kind required by the MSSM. A hidden sector with a pair of (S (a b) ; I center dot (a b) ) fields breaks supersymmetry and facilitates 0. SUSY breaking is communicated via supergravity. In this scenario, matter fermion Yukawa couplings are reduced from 15 to just 3 parameters in MSGUT with three generations.
Thermo-optic Degradation of Single-Modedness in Active LMA fibers and Simple Compensation Mechanisms
Resumo:
We demonstrate significant thermo-optic degradation of single-modedness in active large mode area fibers due to heat generation in the fiber. We propose and demonstrate through simulations, simple compensation mechanisms using custom length dependent fiber coiling.
Resumo:
We propose a Monte Carlo filter for recursive estimation of diffusive processes that modulate the instantaneous rates of Poisson measurements. A key aspect is the additive update, through a gain-like correction term, empirically approximated from the innovation integral in the time-discretized Kushner-Stratonovich equation. The additive filter-update scheme eliminates the problem of particle collapse encountered in many conventional particle filters. Through a few numerical demonstrations, the versatility of the proposed filter is brought forth.
Resumo:
1999年,在我国实践5号卫星上完成了两层流体空间实验,实验研究两层不相混合流体的纯Marangoni对流(温度梯度与界面垂直)与热毛细对流(温度梯度方向与流体界面平行).前者存在发生Marangoni对流的最小临界温差值△Tc,低于该值流体系统处于静止状态;后者中只要存在沿界面的温度梯度便会产生热毛细对流.空间实验采用石蜡和氟化液两层流体新体系,实现了平整的液-液交界面,并从卫星上传回上万幅数字图像.通过多幅图像叠加处理得到了定量的流速场.数值模拟计算分析了相应工况时对流流动的速度场,两者的流场结构和速度大小基本一致,实验验证了理论模型.
Resumo:
A theoretical analysis of instability of saturated soil is presented considering the simple shearing of a heat conducting thermo-visco-plastic material. It is shown that the instability is mainly the consequence of thermal softening which overcomes the strain hardening and the other type of instability is controlled by strain softening. The effects of other factors such as permeability to the instability are discussed in this paper.
Resumo:
The frequency characteristics of a VCSEL with a quarter-wave plate (QWP) and an external reflector are investigated with the translation matrix of the vectorial field. Two series of eigenmode with a shift of half the free spectrum range are linearly polarized, respectively, along the neutral axes of QWP. We also numerically explore the polarization self-modulation phenomenon by using a vectorial laser equation and considering the inhomogeneous broadening of the gain medium. If the external cavity is so short that the shift is bigger than the homogeneous broadening, two stable longitudinal modes oscillate, respectively, on the neutral axes of QWP because they consume different carriers. With a long external cavity, the competition of the modes for the common carriers causes the intensity fluctuation of the modes with a period of one round-trip time of the external cavity.