903 resultados para the mitochondrial signaling pathway


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TOR (target of rapamycin) signal transduction pathway is an important mechanism by which cell growth is controlled in all eucaryotic cells. Specifically, TOR signaling adjusts the protein biosynthetic capacity of cells according to nutrient availability. In mammalian cells, one branch of this pathway controls general translational initiation, whereas a separate branch specifically regulates the translation of ribosomal protein (r-protein) mRNAs. In Saccharomyces cerevisiae, the TOR pathway similarly regulates general translational initiation, but its specific role in the synthesis of ribosomal components is not well understood. Here we demonstrate that in yeast control of ribosome biosynthesis by the TOR pathway is surprisingly complex. In addition to general effects on translational initiation, TOR exerts drastic control over r-protein gene transcription as well as the synthesis and subsequent processing of 35S precursor rRNA. We also find that TOR signaling is a prerequisite for the induction of r-protein gene transcription that occurs in response to improved nutrient conditions. This induction has been shown previously to involve both the Ras-adenylate cyclase as well as the fermentable growth medium–induced pathways, and our results therefore suggest that these three pathways may be intimately linked.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two major routes of preprotein targeting into mitochondria are known. Preproteins carrying amino-terminal signals mainly use Tom20, the general import pore (GIP) complex and the Tim23–Tim17 complex. Preproteins with internal signals such as inner membrane carriers use Tom70, the GIP complex, and the special Tim pathway, involving small Tims of the intermembrane space and Tim22–Tim54 of the inner membrane. Little is known about the biogenesis and assembly of the Tim proteins of this carrier pathway. We report that import of the preprotein of Tim22 requires Tom20, although it uses the carrier Tim route. In contrast, the preprotein of Tim54 mainly uses Tom70, yet it follows the Tim23–Tim17 pathway. The positively charged amino-terminal region of Tim54 is required for membrane translocation but not for targeting to Tom70. In addition, we identify two novel homologues of the small Tim proteins and show that targeting of the small Tims follows a third new route where surface receptors are dispensable, yet Tom5 of the GIP complex is crucial. We conclude that the biogenesis of Tim proteins of the carrier pathway cannot be described by either one of the two major import routes, but involves new types of import pathways composed of various features of the hitherto known routes, including crossing over at the level of the GIP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphoinositide-dependent kinase-1 (PDK-1) is a central mediator of the cell signaling between phosphoinositide 3-kinase (PI3K) and various intracellular serine/threonine kinases including Akt/protein kinase B (PKB), p70 S6 kinases, and protein kinase C. Recent studies with cell transfection experiments have implied that PDK-1 may be involved in various cell functions including cell growth and apoptosis. However, despite its pivotal role in cellular signalings, the in vivo functions of PDK-1 in a multicellular system have rarely been investigated. Here, we have isolated Drosophila PDK-1 (dPDK-1) mutants and characterized the in vivo roles of the kinase. Drosophila deficient in the dPDK-1 gene exhibited lethality and an apoptotic phenotype in the embryonic stage. Conversely, overexpression of dPDK-1 increased cell and organ size in a Drosophila PI3K-dependent manner. dPDK-1 not only could activate Drosophila Akt/PKB (Dakt1), but also substitute the in vivo functions of its mammalian ortholog to activate Akt/PKB. This functional interaction between dPDK-1 and Dakt1 was further confirmed through genetic analyses in Drosophila. On the other hand, cAMP-dependent protein kinase, which has been proposed as a possible target of dPDK-1, did not interact with dPDK-1. In conclusion, our findings provide direct evidence that dPDK-1 regulates cell growth and apoptosis during Drosophila development via the PI3K-dependent signaling pathway and demonstrate our Drosophila system to be a powerful tool for elucidating the in vivo functions and targets of PDK-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3-Methylcrotonyl-coenzyme A carboxylase (MCCase) is a mitochondrial biotin-containing enzyme whose metabolic function is not well understood in plants. In soybean (Glycine max) seedlings the organ-specific and developmentally induced changes in MCCase expression are regulated by mechanisms that control the accumulation of MCCase mRNA and the activity of the enzyme. During soybean cotyledon development, when seed-storage proteins are degraded, leucine (Leu) accumulation peaks transiently at 8 d after planting. The coincidence between peak MCCase expression and the decline in Leu content provides correlative evidence that MCCase is involved in the mitochondrial catabolism of Leu. Direct evidence for this conclusion was obtained from radiotracer metabolic studies using extracts from isolated mitochondria. These experiments traced the metabolic fate of [U-14C]Leu and NaH14CO3, the latter of which was incorporated into methylglutaconyl-coenzyme A (CoA) via MCCase. These studies directly demonstrate that plant mitochondria can catabolize Leu via the following scheme: Leu → α-ketoisocaproate → isovaleryl-CoA → 3-methylcrotonyl-CoA → 3-methylglutaconyl-CoA → 3-hydroxy-3-methylglutaryl-CoA → acetoacetate + acetyl-CoA. These findings demonstrate for the first time, to our knowledge, that the enzymes responsible for Leu catabolism are present in plant mitochondria. We conclude that a primary metabolic role of MCCase in plants is the catabolism of Leu.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The hedgehog signaling pathway is vital in early development, but then becomes dormant, except in some cancer tumours. Hedgehog inhibitors are being developed for potential use in cancer. Objectives/Methods: The objective of this evaluation is to review the initial clinical studies of the hedgehog inhibitor, GDC-0449, in subjects with cancer. Results: Phase I trials have shown that GDC-0449 has benefits in subjects with metastatic or locally advanced basal-cell carcinoma and in one subjects with medulloblastoma. GDC-0449 was well tolerated. Conclusions: Long term efficacy and safety studies of GDC-0449 in these conditions and other solid cancers are now underway. These clinical trials with GDC-0449, and trials with other hedgehog inhibitors, will reveal whether it is beneficial and safe to inhibit the hedgehog pathway, in a wide range of solid tumours or not.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tumor suppressor PTEN antagonizes phosphatidylinositol 3-kinase (PI3K), which contributes to tumorigenesis in many cancer types. While PTEN mutations occur in some melanomas, their precise mechanistic consequences have yet to be elucidated. We sought to identify novel downstream effectors of PI3K using a combination of genomic and functional tests. Microarray analysis of 53 melanoma cell lines identified 610 genes differentially expressed (P<0.05) between wild-type lines and those with PTEN aberrations. Many of these genes are known to be involved in the PI3K pathway and other signaling pathways influenced by PTEN. Validation of differential gene expression by qRT-PCR was performed in the original 53 cell lines and an independent set of 18 melanoma lines with known PTEN status. Osteopontin (OPN), a secreted glycophosphoprotein that contributes to tumor progression, was more abundant at both the mRNA and protein level in PTEN mutants. The inverse correlation between OPN and PTEN expression was validated (P<0.02) by immunohistochemistry using melanoma tissue microarrays. Finally, treatment of cell lines with the PI3K inhibitor LY294002 caused a reduction in expression of OPN. These data indicate that OPN acts downstream of PI3K in melanoma and provides insight into how PTEN loss contributes to melanoma development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Secretion of proinflammatory cytokines by LPS activated endothelial cells contributes substantially to the pathogenesis of sepsis. However, the mechanism involved in this process is not well understood. In the present study, we determined the roles of GEF-H1 (Guanine-nucleotide exchange factor-H1)-RhoA signalling in LPS-induced interleukin-8 (IL-8, CXCL8) production in endothelial cells. First, we observed that GEF-H1 expression was upregulated in a dose- and time-dependent manner as consistent with TLR4 (Toll-like receptor 4) expression after LPS stimulation. Afterwards, Clostridium difficile toxin B-10463 (TcdB-10463), an inhibitor of Rho activities, reduced LPS-induced NF-κB phosphorylation. Inhibition of GEF-H1 and RhoA expression reduced LPS-induced NF-κB and p38 phosphorylation. TLR4 knockout blocked LPS-induced activity of RhoA, however, MyD88 knockout did not impair the LPS-induced activity of RhoA. Nevertheless, TLR4 and MyD88 knockout both significantly inhibited transactivation of NF-κB. GEF-H1-RhoA and MyD88 both induced significant changes in NF-κB transactivation and IL-8 synthesis. Co-inhibition of GEF-H1-RhoA and p38 expression produced similar inhibitory effects on LPS-induced NF-κB transactivation and IL-8 synthesis as inhibition of p38 expression alone, thus confirming that activation of p38 was essential for the GEF-H1-RhoA signalling pathway to induce NF-κB transactivation and IL-8 synthesis. Taken together, these results demonstrate that LPS-induced NF-κB activation and IL-8 synthesis in endothelial cells are regulated by the MyD88 pathway and GEF-H1-RhoA pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irregular atrial pressure, defective folate and cholesterol metabolism contribute to the pathogenesis of hypertension. However, little is known about the combined roles of the methylenetetrahydrofolate reductase (MTHFR), apolipoprotein-E (ApoE) and angiotensin-converting enzyme (ACE) genes, which are involved in metabolism and homeostasis. The objective of this study is to investigate the association of the MTHFR 677 C>T and 1298A>C, ACE insertion–deletion (I/D) and ApoE genetic polymorphisms with hypertension and to further explore the epistasis interactions that are involved in these mechanisms. A total of 594 subjects, including 348 normotensive and 246 hypertensive ischemic stroke subjects were recruited. The MTHFR 677 C>T and 1298A>C, ACE I/D and ApoEpolymorphisms were genotyped and the epistasis interaction were analyzed. The MTHFR 677 C>T and ApoE polymorphisms demonstrated significant associations with susceptibility to hypertension in multiple logistic regression models, multifactor dimensionality reduction and a classification and regression tree. In addition, the logistic regression model demonstrated that significant interactions between the ApoE E3E3, E2E4, E2E2 and MTHFR 677 C>T polymorphisms existed. In conclusion, the results of this epistasis study indicated significant association between the ApoE and MTHFR polymorphisms and hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal Transducer and Activator of Transcription (STATs) regulate various target genes such as cyclin D1, MYC, and BCL2 in nonneuronal cells which contribute towards progression as well as prevention of apoptosis and are involved in differentiation and cell survival. However, in neuronal cells, the role of STATs in the activation and regulation of these target genes and their signaling pathways are still not well established. In this study, a robust cyclin D1 expression was observed following IGF-1 stimulation in SY5Y cells as well as neurospheres. JAK/STAT pathway was shown to be involved in this upregulation. A detailed promoter analysis revealed that the specific STAT involved was STAT5, which acted as a positive regulatory element for cyclin D1 expression. Overexpression studies confirmed increase in cyclin D1 expression in response to STAT5a and STAT5b constructs when compared to dominant-negative STAT5. siRNA targeting STAT5, diminished the cyclin D1 expression, further confirming that STAT5 specifically regulated cyclin D1 in neuronal cells. Together, these findings shed new light on the mechanism of IGF-1 mediated upregulation of cyclin D1 expression in neural cell lines as well as in neural stem cells via the JAK/STAT5 signaling cascade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of apoptosis signal regulating kinase 1 (ASK1)-p38 MAPK death signaling cascade is irn plicated in the death of dopaminergic neurons in substantia nigra in Parkinson's disease (PD). We investigated upstream activators of ASK1 using an MPTP mouse model of parkinsonism and assessed the temporal cascade of death signaling in ventral midbrain (VMB) and striatum (ST). MPTP selectively activated ASK1 and downstream 1)38 MAPK in a time dependent manner in VMB alone. This occurred through selective protein thiol oxidation of the redox-sensitive thiol disulfide oxidoreductase, thiorcdoxin (Trxl), resulting in release of its inhibitory association with ASK1, while glutathione-S-transferase ji 1 (GSTM1) remained in reduced form in association with ASK1. Levels of tumor necrosis factor (TNF), a known activator of ASK1, increased early after MPTP in VMB. Protein ovariation netvvork analysis (PCNA) using protein states as nodes revealed TNF to be an important node regulating the ASK1 signaling cascade. In confirmation, blocking MPTP-mecliated TNF signaling through intrathecal administration of TNFneutralizing antibody prevented Trxl oxidation and downstream ASK1-p38 MAPK activation. Averting an early increase in TNF, which leads to protein thiol oxidation resulting in activation of ASK1-p38 signaling, may be critical for neuroprotection in PD. Importantly, network analysis can help in understanding the cause/effect relationship within protein networks in complex disease states. (C) 2015 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibition of the mitochondrial Na+/Ca2+ exchanger (NCLX) by CGP37157 is protective in models of neuronal injury that involve disruption of intracellular Ca2+ homeostasis. However, the Ca2+ signaling pathways and stores underlying neuroprotection by that inhibitor are not well defined. In the present study, we analyzed how intracellular Ca2+ levels are modulated by CGP37157 (10 mu M) during NMDA insults in primary cultures of rat cortical neurons. We initially assessed the presence of NCLX in mitochondria of cultured neurons by immunolabeling, and subsequently, we analyzed the effects of CGP37157 on neuronal Ca2+ homeostasis using cameleon-based mitochondrial Ca2+ and cytosolic Ca2+ ([Ca2+](i)) live imaging. We observed that NCLX-driven mitochondrial Ca2+ exchange occurs in cortical neurons under basal conditions as CGP37157 induced a decrease in [Ca-2](i) concomitant with a Ca2+ accumulation inside the mitochondria. In turn, CGP37157 also inhibited mitochondrial Ca2+ efflux after the stimulation of acetylcholine receptors. In contrast, CGP37157 strongly prevented depolarization-induced [Ca2+](i) increase by blocking voltage-gated Ca2+ channels (VGCCs), whereas it did not induce depletion of ER Ca2+ stores. Moreover, mitochondrial Ca2+ overload was reduced as a consequence of diminished Ca2+ entry through VGCCs. The decrease in cytosolic and mitochondrial Ca2+ overload by CGP37157 resulted in a reduction of excitotoxic mitochondrial damage, characterized here by a reduction in mitochondrial membrane depolarization, oxidative stress and calpain activation. In summary, our results provide evidence that during excitotoxicity CGP37157 modulates cytosolic and mitochondrial Ca2+ dynamics that leads to attenuation of NMDA-induced mitochondrial dysfunction and neuronal cell death by blocking VGCCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toll-like receptor 4 (TLR4) is critical for LPS recognition and cellular responses. It also recognizes some viral envelope proteins. Detection mostly results in the inflammation rather than specific antiviral responses. However, it's unclear in fish. In this report, a TLR4 gene (named as GrTLR4b) was cloned and characterized from rare minnow Gobiocypris rarus. The full length of GrTLR4b cDNA consists of 2766 nucleotides and encodes a polypeptide of 818 amino acids with an estimated molecular mass of 94,518 Da and a predicted isoelectric point of 8.41. The predicted amino acid sequence comprises a signal peptide, six leucine-rich repeat (LRR) motifs, one leucine-rich repeat C-terminal (LRRCT) motif, followed by a transmembrane segment of 23 amino acids, and a cytoplasmic region of 167 amino acids containing one Toll - interleukin 1 - receptor (TIR) motif. It's closely similar to the zebrafish (Danio rerio) TLR4b amino acid sequence with an identity of 77%. Quantitative RT-PCR analysis showed GrTLR4b mRNA was constitutive expression in gill, heart, intestine, kidney, liver, muscle and spleen tissues in healthy animals and up-regulated by viruses and bacteria. After being infected by grass carp reovirus or Aeromonas hydrophila, GrTLR4b expressions were up-regulated from 24 h post-injection and lasted until the fish became moribund (P < 0.05). These data implied that TLR4 signaling pathway could be activated by both viral and bacterial infection in rare minnow. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Drosophila, Toll signaling cascade, which resembles the mammalian Toll-like receptor (TLR)/IL-1R signaling pathways and regulates the expression of anti-microbial peptide genes, mainly relies on peptidoglycan recognition proteins (PGRPs) for the detection of bacterial pathogens. To explore the effect of zebrafish peptidoglycan recognition protein 6 (zfPGRP6) on Toll-like receptor signaling pathway, RNA interference (siRNA) and real time quantitative PCR (RQ-PCR) methods were used to identify differentially expressed genes regulated by zfPGRP6. The target genes included TLR2, TLR3, TLR5, TLR7, TLR8, IL1R, Sterile-alpha and Armadillo motif containing protein (SARM), myeloid differentiation factor 88 (MyD88) and nuclear factor (NF)-kappa B2 (p100/p52). The results of RQ-PCR showed that RNAi-mediated Suppression of zfPGRP6 significantly down-regulated the expression of TLR2, TLR5, IL1R, SARM, MyD88 and p100/p52. The expression of beta-defensin-1 was also down-regulated in those embryos silenced by zfPGRP6. In challenge experiments to determine the anti-bacterial response to Gram-negative bacteria, RNAi knock-down of zfPGRP6 markedly increased susceptibility to Flavobacterium columnare. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transactivation is a process whereby stimulation of G-protein-coupled receptors (GPCR) activates signaling from receptors tyrosine kinase (RTK). In neuronal cells, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) acting through the GPCR VPAC-1 exerts trophic effects by transactivating the RTK TrkA receptor for the nerve growth factor (NGF). Both PACAP and NGF have pro-inflammatory activities on monocytes. We have tested the possibility that in monocytes, PACAP, as reported in neuronal cells, uses NGF/TrkA signaling pathway. In these cells, PACAP increases TrkA tyrosine phosphorylations through a PI-3kinase dependent but phospholipase C independent pathway. K252a, an inhibitor of TrkA decreases PACAP-induced Akt and ERK phosphorylation and calcium mobilisation resulting in decreases in intracellular H2O2 production and membrane upregulation of CD11b expression, both functions being inhibited after anti-NGF or anti-TrkA antibody treatment. K252a also inhibits PACAP-associated NF-KB activity. Monocytes increase in NGF production is seen after micromolar PACAP exposure while nanomolar treatment which desensitizes cells to high dose of PACAP prevents PACAP-induced TrkA phosphorylation, H2O2 production and CD11b expression. Finally, NGF-dependent ERK activation and H2O2 production is pertussis toxin sensitive. Altogether these data indicate that in PACAP-activated monocytes some pro-inflammatory activities occur through transactivation mechanisms involving VPAC-1, NGF and TrkA-associated tyrosine kinase activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dual-specificity protein tyrosine phosphatases (PTPs) play integral roles in the regulation of cell signaling. There is a need for new tools to study these phosphatases, and the identification of inhibitors potentially affords not only new means for their study, but also possible therapeutics for the treatment of diseases caused by their dysregulation. However, the identification of selective inhibitors of the protein phosphatases has proven somewhat difficult. PTP localized to mitochondrion 1 (PTPMT1) is a recently discovered dual-specificity phosphatase that has been implicated in the regulation of insulin secretion. Screening of a commercially available small-molecule library yielded alexidine dihydrochloride, a dibiguanide compound, as an effective and selective inhibitor of PTPMT1 with an in vitro concentration that inhibits response by 50% of 1.08 microM. A related dibiguanide analog, chlorhexidine dihydrochloride, also significantly inhibited PTPMT1, albeit with lower potency, while a monobiguanide analog showed very weak inhibition. Treatment of isolated rat pancreatic islets with alexidine dihydrochloride resulted in a dose-dependent increase in insulin secretion, whereas treatment of a pancreatic beta-cell line with the drug affected the phosphorylation of mitochondrial proteins in a manner similar to genetic inhibition of PTPMT1. Furthermore, knockdown of PTPMT1 in rat islets rendered them insensitive to alexidine dihydrochloride treatment, providing evidence for mechanism-based activity of the inhibitor. Taken together, these studies establish alexidine dihydrochloride as an effective inhibitor of PTPMT1, both in vitro and in cells, and support the notion that PTPMT1 could serve as a pharmacological target in the treatment of type II diabetes.