923 resultados para the Induction
Resumo:
Heme oxygenase (Hmox) is an endogenous system that offers protection against placental cytotoxic damage associated with preeclampsia. The Hmox1/carbon monoxide (CO) pathway inhibits soluble Flt-1 (sFlt-1) and soluble Endoglin (sEng). More importantly, statins induce Hmox1 and suppress the release of sFlt-1 and sEng; thus, statins and Hmox1 activators are potential novel therapeutic agents for treating preeclampsia. The contribution of the Hmox system to the pathogenesis of preeclampsia has been further indicated by the incidence of preeclampsia being reduced by a third in smokers, who had reduced levels of circulating sFlt-1. Interestingly, preeclamptic women exhale less CO compared with women with healthy pregnancies. Hmox1 is reduced prior to the increase in sFlt-1 as Hmox1 mRNA expression in the trophoblast is decreased in the first trimester in women who go on to develop preeclampsia. Induction of Hmox1 or exposure to CO or bilirubin has been shown to inhibit the release of sFlt-1 and sEng in animal models of preeclampsia. The functional benefit of statins and Hmox1 induction in women with preeclampsia is valid not only because they inhibit sFlt-1 release, but also because statins and Hmox1 are associated with anti-apoptotic, anti-inflammatory, and anti-oxidant properties. The StAmP trial is the first randomized control trial (RCT) evaluating the use of pravastatin to ameliorate severe preeclampsia. This proof-of-concept study will pave the way for future global RCT, the success of which will greatly contribute to achieving the United Nations Millennium Development Goals (MDG4 and MDG5) and offering an affordable and easily accessible therapy for preeclampsia. © 2014 The Authors.
Resumo:
The emerging role of the multifunctional enzyme, Transglutaminase 2 (TG2) in Cystic Fibrosis (CF) has been linked to its increased expression and intracellular transamidating activity. However, a full understanding of the molecular mechanisms involved still remains unclear despite numerous studies that have attempted to delineate this process. These mechanisms include the NFκB and TGFβ1 pathway amongst others. This study reveals for the first time that the development of fibrosis in CF is due to a TG2-driven epithelial to mesenchymal transition (EMT) via a mechanism involving the activation of the pro-fibrotic cytokine TGFβ1. Using a human ΔF508/W1282X CFTR CF mutant bronchial cell (IB3-1), its CFTR corrected “add-back” cell (C38) as well as a primary human bronchial epithelial cell (HBEC), elevated TG2 levels in the CFTR mutant IB3 cell were shown to activate latent TGFβ1 leading to increased levels found in the culture medium. This activation process was blocked by the presence of cell-permeable and impermeable TG2 inhibitors while inhibition of TGFβ1 receptors blocked TG2 expression. This demonstrates the direct link between TG2 and TGFβ1 in CF. The presence of active cell surface TG2 correlated with an increase in the expression of EMT markers, associated with the CF mutant cells, which could be blocked by the presence of TG2 inhibitors. This was mimicked using the “addback” C38 cell and the primary human bronchial epithelial cell, HBEC, where an increase in TG2 expression and activity in the presence of TGFβ1 concurred with a change in cell morphology and an elevation in EMT marker expression. Conversely, a knockdown of TG2 in the CF mutant IB3 cells illustrated that an inhibition of TG2 blocks the increase in EMT marker expression as well as causing an increase in TEER measurement. This together with an increase in the migration profile of the CF mutant IB3 cell against the “add-back” C38 cell suggests that TG2 drives a mesenchymal phenotype in CF. The involvement of TG2 activated TGFβ1 in CF was further demonstrated with an elevation/inhibition of p- SMAD 2 and 3 activation in the presence of TGFβ1/TG2 cell-permeable/impermeable inhibitors respectively. The use of a comparative airway cell model where bronchial epithelial cells were cultured at the air liquid interface (ALI) confirmed the observations in submerged culture depicting the robustness of the model and reiterated the importance of TG2 in CF. Using a CFTR corrector combined with TG2 inhibitors, this study showed that the correction and stabilisation of the ΔF508 CFTR mutation in the mutant cell forged an increase in matured CFTR copies trafficking to the apical surface by circumventing proteosomal degradation. Thus the results presented here suggests that TG2 expression is elevated in the CFTR mutant bronchial cell via a TGFβ1 driven positive feedback cycle whereby activation of latent TGFβ1 by TG2 leads in turn to an elevation in its own expression by TGFβ1. This vicious cycle then drives EMT in CF ultimately leading to lung remodelling and fibrosis. Importantly, TG2 inhibition blocks TGFβ1 activation leading to an inhibition of EMT and further blocks the emerging fibrosis, thus stabilizing and supporting the maturation, trafficking and conductance of CFTR channels at the apical surface.
Resumo:
The case study is a qualitative study of the perceptions of a purposeful sample of intern principal participants in Broward County Public School's 2001-2003 principal leadership induction program through survey, interview and document analysis of their experiences concerning their success or failure in achieving the position of principal. The study focused on constructs of professional and organizational socialization and instructional leadership that research suggests are vital and integrated components of the effective development of aspiring instructional leaders. ^ The findings revealed that purposeful mentoring, a variety of site placement, hands on practical experiences, in addition to the quality of experience measured by the number of years prior experience are positively reported to affect the degrees of success perceived by intern principals. The study validated the interrelatedness of the three constructs professional and organizational socialization and instructional leadership as components that are realized in the development process through formal and informal characteristics of socialization. The data gathered would be of benefit to principal leadership program designers to assist in their understanding of participants' successes and failures that influence individual needs based on their experience as perceived by this group. ^ Implications for further study are the need for better understanding of leadership development, continued reinforcement of best practices such as mentoring, site shadowing and coaching, clarification of the administrator's role, data analysis, curriculum implementation and student achievement. Organizations need to implement a common set of expectations, reasoning, attitudes, and understanding of purpose that guide behaviors. Recommendations are to design leadership induction programs to meet individual strengths and weaknesses not a one-size-fits-all program including a constructive and prescriptive two-way feedback system, select and assign mentors based on their expertise and candidate needs, varied site placements, develop skills to build collaborative relationships, and a standards based monitoring and assessment system to document program mastery and completion. ^
Resumo:
This study presents perceptions of principals in a leadership induction program in a large urban school district in the southeastern United States. Qualitative research procedures were used to document experiences of principals. Theoretical constructs guiding the study were professional socialization, organizational socialization, and instructional leadership.
Resumo:
Repetitive Ca2+ transients in dendritic spines induce various forms of synaptic plasticity by transmitting information encoded in their frequency and amplitude. CaMKII plays a critical role in decoding these Ca2+ signals to initiate long-lasting synaptic plasticity. However, the properties of CaMKII that mediate Ca2+ decoding in spines remain elusive. Here, I measured CaMKII activity in spines using fast-framing two-photon fluorescence lifetime imaging. Following each repetitive Ca2+ elevations, CaMKII activity increased in a stepwise manner. This signal integration, at the time scale of seconds, critically depended on Thr286 phosphorylation. In the absence of Thr286 phosphorylation, only by increasing the frequency of repetitive Ca2+ elevations could high peak CaMKII activity or plasticity be induced. In addition, I measured the association between CaMKII and Ca2+/CaM during spine plasticity induction. Unlike CaMKII activity, association of Ca2+/CaM to CaMKII plateaued at the first Ca2+ elevation event. This result indicated that integration of Ca2+ signals was initiated by the binding of Ca2+/CaM and amplified by the subsequent increases in Thr286-phosphorylated form of CaMKII. Together, these findings demonstrate that CaMKII functions as a leaky integrator of repetitive Ca2+ signals during the induction of synaptic plasticity, and that Thr286 phosphorylation is critical for defining the frequencies of such integration.
Resumo:
The effect of lycopene on macrophage foam cell formation induced by modified low-density lipoprotein (LDL) was studied. Human monocyte-derived macrophages (HMDM) were incubated with lycopene in the presence or absence of native LDL (nLDL) or LDL modified by oxidation (oxLDL), aggregation (aggLDL), or acetylation (acLDL). The cholesterol content, lipid synthesis, scavenger receptor activity, and the secretion of inflammatory [interleukin (IL)-1β and tumor necrosis factor (TNF)-α] and anti-inflammatory (IL-10) cytokines was determined. Lycopene was found to decrease the synthesis of cholesterol ester in incubations without LDL or with oxLDL while triacylglycerol synthesis was reduced in the presence of oxLDL and aggLDL. Scavenger receptor activity as assessed by the uptake of acLDL was decreased by ∼30% by lycopene. In addition, lycopene inhibited IL-10 secretion by up to 74% regardless of the presence of nLDL or aggLDL but did not affect IL-1β or TNF-α release. Lycopene also reduced the relative abundance of mRNA transcripts for scavenger receptor A (SR-A) in THP-1 macrophages treated with aggLDL. These findings suggest that lycopene may reduce macrophage foam cell formation induced by modified LDL by decreasing lipid synthesis and downregulating the activity and expression of SR-A. However, these effects are accompanied by impaired secretion of the anti-inflammatory cytokine IL-10, suggesting that lycopene may also exert a concomitant proinflammatory effect.
Resumo:
The accumulation of foam cells in the artery wall causes fatty streaks, the first lesions in atherosclerosis. LDL (low-density lipoprotein) plays a major role in foam cell formation, although prior oxidation of the particles is required. Recent studies, however, have provided considerable evidence to indicate that CMRs (chylomicron remnants), which carry dietary lipids in the blood, induce foam cell formation without oxidation. We have shown that CMRs are taken up by macrophages and induce accumulation of both triacylglycerol and cholesterol, and that the rate of uptake and amount of lipid accumulated is influenced by the type of dietary fat in the particles. Furthermore, oxidation of CMRs, in striking contrast with LDL, inhibits, rather than enhances, their uptake and induction of lipid accumulation. In addition, the lipid accumulated after exposure of macrophages to CMRs is resistant to efflux, and this may be due to its sequestration in lysosomes. These findings demonstrate that CMRs induce pro-atherogenic changes in macrophages, and that their effects may be modulated by dietary factors including oxidized fats, lipophilic antioxidants and the type of fat present.
Resumo:
The kinetics of estrogen-induced accumulation of riboflavin-carrier protein in the plasma was investigated in immature male rats using a specific and sensitive homologous radio-immunoassay procedure developed for this purpose. Following a single injection of the steroid hormone, plasma riboflavin-carrier protein levels increased markedly after an initial lag period of approximately 24 h, reaching peak levels around 96 h and declining thereafter. A 1.5 fold amplification of the inductive response was evident on secondary stimulation with the hormone. The magnitude of the response was dependent on hormonal dose, whereas the initial lag phase and the time of peak riboflavin-carrier protein induction were unaltered within the range of the steroid doses (0.1–10 mg/ kg body wt.) tested. Simultaneous administration of progesterone did not affect either the kinetics or the maximum level of the protein induced. The hormonal specificity of this induction was further adduced by the effect of administration of antiestrogens viz., En and Zu chlomiphene citrates, which effectively curtailed hormonal induction of the protein. That the induction involvedde novo-protein synthesis was evident from the complete inhibition obtained upon administration of cycloheximide. Passive immunoneutralization of endogenous riboflavin-carrier protein with antiserum to the homologous protein terminated pregnancy in rats confirming the earlier results with antiserum to chicken riboflavin-carrier protein.
Resumo:
This paper presents a five-level inverter scheme with four two-level inverters for a four-pole induction motor (IM) drive. In a conventional three-phase four-pole IM, there exists two identical voltage-profile winding coil groups per phase around the armature, which are connected in series and spatially apart by two pole pitches. In this paper, these two identical voltage-profile pole-pair winding coils in each phase of the IM are disconnected and fed from four two-level inverters from four sides of the windings with one-fourth dc-link voltage as compared to a conventional five-level neutral-point-clamped inverter. The scheme presented in this paper does not require any special design modification for the induction machine. For this paper, a four-pole IM drive is used, and the scheme can be easily extended to IMs with more than four poles. The proposed scheme is experimentally verified on a four-pole 5-hp IM drive.
Resumo:
Administration of noradrenaline inhibited the induction of hepatic trytophan pyrrolase by Cortisol but not by tryptophan. The selective inhibition of pyrrolase was specific to noradrenaline, whereas adrenaline and rat growth hormone also inhibited tyrosine aminotransferase. None of those three hormones had any effect on the incorporation of [32P]-orthophosphate into RNA, stimulated by cortisol. Other biogenic amines, polypeptide hormones and steroid analogues were not inhibitory to the induction of tryptophan pyrrolase by cortisol. The α-adrenergic agonist, phenylephrine, potentiated the noradrenaline inhibition whereas Image -threo-3,4-dihydroxyphenylserine, its precursor, together with pargyline had no effect on the induction process of pyrrolase. These results support the view that noradrenaline exerts its inhibitory action at the cell membrane via the α-receptor, and is not mediated directly by an intracellular mechanism.
Resumo:
Induction heating is an efficient method used to melt electrically conductive materials, particularly if melting takes place in a ceramic crucible. This form of melting is particularly good for alloys, as electromagnetic forces set up by the induction coil lead to vigorous stirring of the melt ensuring homogeneity and uniformity in temperature. However, for certain reactive alloys, or where high purity is required, ceramic crucibles cannot be used, but a water-cooled segmented copper crucible is employed instead. Water cooling prevents meltdown or distortion of the metal wall, but much of the energy goes into the coolant. To reduce this loss, the electromagnetic force generated by the coil is used to push the melt away from the walls and so minimise contact with water-cooled surfaces. Even then, heat is lost through the crucible base where contact is inevitable. In a collaborative programme between Greenwich and Birmingham Universities, computer modelling has been used in conjunction with experiments to improve the superheat attainable in the melt for a,number of alloys, especially for y-TiAl intermetallics to cast aeroengine turbine blades. The model solves the discretised form of the turbulent Navier-Stokes, thermal energy conservation and Maxwell equations using a Spectral Collocation technique. The time-varying melt envelope is followed explicitly during the computation using an adaptive mesh. This paper briefly describes the mathematical model used to represent the interaction between the magnetic field, fluid flow, heat transfer and change of phase in the crucible and identifies the proportions of energy used in the melt, lost in the crucible base and in the crucible walls. The role of turbulence is highlighted as important in controlling heat losses and turbulence damping is introduced as a means of improving superheat. Model validation is against experimental results and shows good agreement with measured temperatures and energy losses in the cooling fluid throughout the melting cycle.
Resumo:
Thymidylate synthase (TS) is a critical target for chemotherapeutic agents such as 5-fluorouracil (5-FU) and antifolates such as tomudex (TDX),multitargeted antifolate, and ZD9331. Using the MCF-7 breast cancer line, we have developed p53 wild-type (M7TS90) and null (M7TS90-E6) isogenic lines with inducible TS expression (approximately 6-fold induction compared with control after 48 h). In the M7TS90 line, inducible TS expression resulted in a moderate approximately 3-fold increase in 5-FU IC-50(72 h) dose and a dramatic >20-fold increase in the IC-50(72 h) doses of TDX, multitargeted antifolate, and ZD9331. S-phase cell cycle arrest and apoptosis induced by the antifolates were abrogated by TS induction. In contrast, cell cycle arrest and apoptosis induced by 5-FU was unaffected by TS expression levels. Inactivation of p53 significantly increased resistance to 5-FU and the antifolates with IC-50(72 h) doses for 5-FU and TDX of >100 and >10 microM, respectively, in the M7TS90-E6 cell line. Furthermore, p53 inactivation completely abrogated the cell cycle arrest and apoptosis induced by 5-FU. The antifolates induced S-phase arrest in the p53 null cell line; however, the induction of apoptosis by these agents was significantly reduced compared with p53 wild-type cells. Both inducible TS expression and the addition of exogenous thymidine (10 microM) blocked p53 and p21 induction by the antifolates but not by 5-FU in the M7TS90 cell line. Similarly, inducible TS expression and exogenous thymidine abrogated antifolate but not 5-FU-mediated up-regulation of Fas/CD95 in M7TS90 cells. Our results indicate that in M7TS90 cells, inducible TS expression modulates p53 and p53 target gene expression in response to TS-targeted antifolate therapies but not to 5-FU.
Resumo:
Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999 E38 K535 2008
Resumo:
The results of a study of the variation of three-phase induction machines' input impedance with frequency are proposed. A range of motors were analysed, both two-pole and four-pole, and the magnitude and phase of the input impedance were obtained over a wide frequency range of 20 Hz-1 MHz. For test results that would be useful in the prediction of the performance of induction machines during typical use, a test procedure was developed to represent closely typical three-phase stator coil connections when the induction machine is driven by a three-phase inverter. In addition, tests were performed with the motor's cases both grounded and not grounded. The results of the study show that all induction machines of the type considered exhibit a multiresonant impedance profile, where the input impedance reaches at least one maximum as the input frequency is increased. Furthermore, the test results show that the grounding of the motor's case has a significant effect on the impedance profile. Methods to exploit the input impedance profile of an induction machine to optimise machine and inverter systems are also discussed.
Resumo:
The induction of apoptosis in mammalian cells by bacteria is well reported. This process may assist infection by pathogens whereas for non-pathogens apoptosis induction within carcinoma cells protects against colon cancer. Here, apoptosis induction by a major new gut bacterium, Atopobium minutum, was compared with induction by commensal (Escherichia coli K-12 strains), probiotic (Lactobacillus rhamnosus, Bifidobacterium latis) and pathogenic (E. coli: EPEC and VTEC) gut bacteria within the colon cancer cell line, Caco-2. The results show a major apoptotic effect for the pathogens, mild effects for the probiotic strains and A. minutum, but no effect for commensal E. coli. The mild apoptotic effects observed are consistent with the beneficial roles of probotics in protection against colon cancer and suggest, for the first time, that A. minutum possesses similar advantageous, anti-cancerous activity. Although bacterial infection increased Caco-2 membrane FAS levels, caspase-8 was not activated indicating that apoptosis is FAS independent. Instead, in all cases, apoptosis was induced through the mitochondrial pathway as indicated by BAX translocation, cytorchrome c release, and caspase-9 and -3 cleavage. This suggests that an intracellular stimulus initiates the observed apoptosis responses.