968 resultados para text vector space model
Resumo:
The occupant impact velocity (OIV) and acceleration severity index (ASI) are competing measures of crash severity used to assess occupant injury risk in full-scale crash tests involving roadside safety hardware, e.g. guardrail. Delta-V, or the maximum change in vehicle velocity, is the traditional metric of crash severity for real world crashes. This study compares the ability of the OIV, ASI, and delta-V to discriminate between serious and non-serious occupant injury in real world frontal collisions. Vehicle kinematics data from event data recorders (EDRs) were matched with detailed occupant injury information for 180 real world crashes. Cumulative probability of injury risk curves were generated using binary logistic regression for belted and unbelted data subsets. By comparing the available fit statistics and performing a separate ROC curve analysis, the more computationally intensive OIV and ASI were found to offer no significant predictive advantage over the simpler delta-V.
Resumo:
We used a colour-space model of avian vision to assess whether a distinctive bird pollination syndrome exists for floral colour among Australian angiosperms. We also used a novel phylogenetically based method to assess whether such a syndrome represents a significant degree of convergent evolution. About half of the 80 species in our sample that attract nectarivorous birds had floral colours in a small, isolated region of colour space characterized by an emphasis on long-wavelength reflection. The distinctiveness of this 'red arm' region was much greater when colours were modelled for violet-sensitive (VS) avian vision than for the ultraviolet-sensitive visual system. Honeyeaters (Meliphagidae) are the dominant avian nectarivores in Australia and have VS vision. Ancestral state reconstructions suggest that 31 lineages evolved into the red arm region, whereas simulations indicate that an average of five or six lineages and a maximum of 22 are likely to have entered in the absence of selection. Thus, significant evolutionary convergence on a distinctive floral colour syndrome for bird pollination has occurred in Australia, although only a subset of bird-pollinated taxa belongs to this syndrome. The visual system of honeyeaters has been the apparent driver of this convergence.
Resumo:
An introduction to Fourier Series based on the minimization of the least square error between an approximate series representation and the exact function.
Resumo:
The estimation of modal parameters of a structure from ambient measurements has attracted the attention of many researchers in the last years. The procedure is now well established and the use of state space models, stochastic system identification methods and stabilization diagrams allows to identify the modes of the structure. In this paper the contribution of each identified mode to the measured vibration is discussed. This modal contribution is computed using the Kalman filter and it is an indicator of the importance of the modes. Also the variation of the modal contribution with the order of the model is studied. This analysis suggests selecting the order for the state space model as the order that includes the modes with higher contribution. The order obtained using this method is compared to those obtained using other well known methods, like Akaike criteria for time series or the singular values of the weighted projection matrix in the Stochastic Subspace Identification method. Finally, both simulated and measured vibration data are used to show the practicability of the derived technique. Finally, it is important to remark that the method can be used with any identification method working in the state space model.
Resumo:
Monte Carlo (MC) method can accurately compute the dose produced by medical linear accelerators. However, these calculations require a reliable description of the electron and/or photon beams delivering the dose, the phase space (PHSP), which is not usually available. A method to derive a phase space model from reference measurements that does not heavily rely on a detailed model of the accelerator head is presented. The iterative optimization process extracts the characteristics of the particle beams which best explains the reference dose measurements in water and air, given a set of constrains
Resumo:
The modal analysis of a structural system consists on computing its vibrational modes. The experimental way to estimate these modes requires to excite the system with a measured or known input and then to measure the system output at different points using sensors. Finally, system inputs and outputs are used to compute the modes of vibration. When the system refers to large structures like buildings or bridges, the tests have to be performed in situ, so it is not possible to measure system inputs such as wind, traffic, . . .Even if a known input is applied, the procedure is usually difficult and expensive, and there are still uncontrolled disturbances acting at the time of the test. These facts led to the idea of computing the modes of vibration using only the measured vibrations and regardless of the inputs that originated them, whether they are ambient vibrations (wind, earthquakes, . . . ) or operational loads (traffic, human loading, . . . ). This procedure is usually called Operational Modal Analysis (OMA), and in general consists on to fit a mathematical model to the measured data assuming the unobserved excitations are realizations of a stationary stochastic process (usually white noise processes). Then, the modes of vibration are computed from the estimated model. The first issue investigated in this thesis is the performance of the Expectation- Maximization (EM) algorithm for the maximum likelihood estimation of the state space model in the field of OMA. The algorithm is described in detail and it is analysed how to apply it to vibration data. After that, it is compared to another well known method, the Stochastic Subspace Identification algorithm. The maximum likelihood estimate enjoys some optimal properties from a statistical point of view what makes it very attractive in practice, but the most remarkable property of the EM algorithm is that it can be used to address a wide range of situations in OMA. In this work, three additional state space models are proposed and estimated using the EM algorithm: • The first model is proposed to estimate the modes of vibration when several tests are performed in the same structural system. Instead of analyse record by record and then compute averages, the EM algorithm is extended for the joint estimation of the proposed state space model using all the available data. • The second state space model is used to estimate the modes of vibration when the number of available sensors is lower than the number of points to be tested. In these cases it is usual to perform several tests changing the position of the sensors from one test to the following (multiple setups of sensors). Here, the proposed state space model and the EM algorithm are used to estimate the modal parameters taking into account the data of all setups. • And last, a state space model is proposed to estimate the modes of vibration in the presence of unmeasured inputs that cannot be modelled as white noise processes. In these cases, the frequency components of the inputs cannot be separated from the eigenfrequencies of the system, and spurious modes are obtained in the identification process. The idea is to measure the response of the structure corresponding to different inputs; then, it is assumed that the parameters common to all the data correspond to the structure (modes of vibration), and the parameters found in a specific test correspond to the input in that test. The problem is solved using the proposed state space model and the EM algorithm. Resumen El análisis modal de un sistema estructural consiste en calcular sus modos de vibración. Para estimar estos modos experimentalmente es preciso excitar el sistema con entradas conocidas y registrar las salidas del sistema en diferentes puntos por medio de sensores. Finalmente, los modos de vibración se calculan utilizando las entradas y salidas registradas. Cuando el sistema es una gran estructura como un puente o un edificio, los experimentos tienen que realizarse in situ, por lo que no es posible registrar entradas al sistema tales como viento, tráfico, . . . Incluso si se aplica una entrada conocida, el procedimiento suele ser complicado y caro, y todavía están presentes perturbaciones no controladas que excitan el sistema durante el test. Estos hechos han llevado a la idea de calcular los modos de vibración utilizando sólo las vibraciones registradas en la estructura y sin tener en cuenta las cargas que las originan, ya sean cargas ambientales (viento, terremotos, . . . ) o cargas de explotación (tráfico, cargas humanas, . . . ). Este procedimiento se conoce en la literatura especializada como Análisis Modal Operacional, y en general consiste en ajustar un modelo matemático a los datos registrados adoptando la hipótesis de que las excitaciones no conocidas son realizaciones de un proceso estocástico estacionario (generalmente ruido blanco). Posteriormente, los modos de vibración se calculan a partir del modelo estimado. El primer problema que se ha investigado en esta tesis es la utilización de máxima verosimilitud y el algoritmo EM (Expectation-Maximization) para la estimación del modelo espacio de los estados en el ámbito del Análisis Modal Operacional. El algoritmo se describe en detalle y también se analiza como aplicarlo cuando se dispone de datos de vibraciones de una estructura. A continuación se compara con otro método muy conocido, el método de los Subespacios. Los estimadores máximo verosímiles presentan una serie de propiedades que los hacen óptimos desde un punto de vista estadístico, pero la propiedad más destacable del algoritmo EM es que puede utilizarse para resolver un amplio abanico de situaciones que se presentan en el Análisis Modal Operacional. En este trabajo se proponen y estiman tres modelos en el espacio de los estados: • El primer modelo se utiliza para estimar los modos de vibración cuando se dispone de datos correspondientes a varios experimentos realizados en la misma estructura. En lugar de analizar registro a registro y calcular promedios, se utiliza algoritmo EM para la estimación conjunta del modelo propuesto utilizando todos los datos disponibles. • El segundo modelo en el espacio de los estados propuesto se utiliza para estimar los modos de vibración cuando el número de sensores disponibles es menor que vi Resumen el número de puntos que se quieren analizar en la estructura. En estos casos es usual realizar varios ensayos cambiando la posición de los sensores de un ensayo a otro (múltiples configuraciones de sensores). En este trabajo se utiliza el algoritmo EM para estimar los parámetros modales teniendo en cuenta los datos de todas las configuraciones. • Por último, se propone otro modelo en el espacio de los estados para estimar los modos de vibración en la presencia de entradas al sistema que no pueden modelarse como procesos estocásticos de ruido blanco. En estos casos, las frecuencias de las entradas no se pueden separar de las frecuencias del sistema y se obtienen modos espurios en la fase de identificación. La idea es registrar la respuesta de la estructura correspondiente a diferentes entradas; entonces se adopta la hipótesis de que los parámetros comunes a todos los registros corresponden a la estructura (modos de vibración), y los parámetros encontrados en un registro específico corresponden a la entrada en dicho ensayo. El problema se resuelve utilizando el modelo propuesto y el algoritmo EM.
Resumo:
El objetivo del presente trabajo de investigación es explorar nuevas técnicas de implementación, basadas en grafos, para las Redes de Neuronas, con el fin de simplificar y optimizar las arquitecturas y la complejidad computacional de las mismas. Hemos centrado nuestra atención en una clase de Red de Neuronas: las Redes de Neuronas Recursivas (RNR), también conocidas como redes de Hopfield. El problema de obtener la matriz sináptica asociada con una RNR imponiendo un determinado número de vectores como puntos fijos, no está en absoluto resuelto, el número de vectores prototipo que pueden ser almacenados en la red, cuando se utiliza la ley de Hebb, es bastante limitado, la red se satura rápidamente cuando se pretende almacenar nuevos prototipos. La ley de Hebb necesita, por tanto, ser revisada. Algunas aproximaciones dirigidas a solventar dicho problema, han sido ya desarrolladas. Nosotros hemos desarrollado una nueva aproximación en la forma de implementar una RNR en orden a solucionar estos problemas. La matriz sináptica es obtenida mediante la superposición de las componentes de los vectores prototipo, sobre los vértices de un Grafo, lo cual puede ser también interpretado como una coloración de dicho grafo. Cuando el periodo de entrenamiento se termina, la matriz de adyacencia del Grafo Resultante o matriz de pesos, presenta ciertas propiedades por las cuales dichas matrices serán llamadas tetraédricas. La energía asociada a cualquier estado de la red es representado por un punto (a,b) de R2. Cada uno de los puntos de energía asociados a estados que disten lo mismo del vector cero está localizado sobre la misma línea de energía de R2. El espacio de vectores de estado puede, por tanto, clasificarse en n clases correspondientes a cada una de las n diferentes distancias que puede tener cualquier vector al vector cero. La matriz (n x n) de pesos puede reducirse a un n-vector; de esta forma, tanto el tiempo de computación como el espacio de memoria requerido par almacenar los pesos, son simplificados y optimizados. En la etapa de recuperación, es introducido un vector de parámetros R2, éste es utilizado para controlar la capacidad de la red: probaremos que lo mayor es la componente a¡, lo menor es el número de puntos fijos pertenecientes a la línea de energía R¡. Una vez que la capacidad de la red ha sido controlada mediante este parámetro, introducimos otro parámetro, definido como la desviación del vector de pesos relativos, este parámetro sirve para disminuir ostensiblemente el número de parásitos. A lo largo de todo el trabajo, hemos ido desarrollando un ejemplo, el cual nos ha servido para ir corroborando los resultados teóricos, los algoritmos están escritos en un pseudocódigo, aunque a su vez han sido implamentados utilizando el paquete Mathematica 2.2., mostrándolos en un volumen suplementario al texto.---ABSTRACT---The aim of the present research is intended to explore new specifícation techniques of Neural Networks based on Graphs to be used in the optimization and simplification of Network Architectures and Computational Complexhy. We have focused our attention in a, well known, class of Neural Networks: the Recursive Neural Networks, also known as Hopfield's Neural Networks. The general problem of constructing the synaptic matrix associated with a Recursive Neural Network imposing some vectors as fixed points is fer for completery solved, the number of prototype vectors (learning patterns) which can be stored by Hebb's law is rather limited and the memory will thus quickly reach saturation if new prototypes are continuously acquired in the course of time. Hebb's law needs thus to be revised in order to allow new prototypes to be stored at the expense of the older ones. Some approaches related with this problem has been developed. We have developed a new approach of implementing a Recursive Neural Network in order to sob/e these kind of problems, the synaptic matrix is obtained superposing the components of the prototype vectors over the vértices of a Graph which may be interpreted as a coloring of the Graph. When training is finished the adjacency matrix of the Resulting Graph or matrix of weights presents certain properties for which it may be called a tetrahedral matrix The energy associated to any possible state of the net is represented as a point (a,b) in R2. Every one of the energy points associated with state-vectors having the same Hamming distance to the zero vector are located over the same energy Une in R2. The state-vector space may be then classified in n classes according to the n different possible distances firom any of the state-vectors to the zero vector The (n x n) matrix of weights may also be reduced to a n-vector of weights, in this way the computational time and the memory space required for obtaining the weights is optimized and simplified. In the recall stage, a parameter vectora is introduced, this parameter is used for controlling the capacity of the net: it may be proved that the bigger is the r, component of J, the lower is the number of fixed points located in the r¡ energy line. Once the capacity of the net has been controlled by the ex parameter, we introduced other parameter, obtained as the relative weight vector deviation parameter, in order to reduce the number of spurious states. All along the present text, we have also developed an example, which serves as a prove for the theoretical results, the algorithms are shown in a pseudocode language in the text, these algorithm so as the graphics have been developed also using the Mathematica 2.2. mathematical package which are shown in a supplementary volume of the text.
The North Sea autumn spawning Herring (Clupea harengus L.) Spawning Component Abundance Index (SCAI)
Resumo:
The North Sea autumn-spawning herring (Clupea harengus) stock consists of a set of different spawning components. The dynamics of the entire stock have been well characterized, but although time-series of larval abundance indices are available for the individual components, study of the dynamics at the component level has historically been hampered by missing observations and high sampling noise. A simple state-space statistical model is developed that is robust to these problems, gives a good fit to the data, and proves capable of both handling and predicting missing observations well. Furthermore, the sum of the fitted abundance indices across all components proves an excellent proxy for the biomass of the total stock, even though the model utilizes information at the individual-component level. The Orkney-Shetland component appears to have recovered faster from historic depletion events than the other components, whereas the Downs component has been the slowest. These differences give rise to changes in stock composition, which are shown to vary widely within a relatively short time. The modelling framework provides a valuable tool for studying and monitoring the dynamics of the individual components of the North Sea herring stock.
Resumo:
H: 2 ft. 10 1/16 in.; bronze inlaid with gold
Resumo:
H: 2 ft. 10 1/16 in.; bronze inlaid with gold
Resumo:
Streaming video application requires high security as well as high computational performance. In video encryption, traditional selective algorithms have been used to partially encrypt the relatively important data in order to satisfy the streaming performance requirement. Most video selective encryption algorithms are inherited from still image encryption algorithms, the encryption on motion vector data is not considered. The assumption is that motion vector data are not as important as pixel image data. Unfortunately, in some cases, motion vector itself may be sufficient enough to leak out useful video information. Normally motion vector data consume over half of the whole video stream bandwidth, neglecting their security may be unwise. In this paper, we target this security problem and illustrate attacks at two different levels that can restore useful video information using motion vectors only. Further, an information analysis is made and a motion vector information model is built. Based on this model, we describe a new motion vector encryption algorithm called MVEA. We show the experimental results of MVEA. The security strength and performance of the algorithm are also evaluated.
Resumo:
The deficiencies of stationary models applied to financial time series are well documented. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for financial markets. We use a dynamic switching (modelled by a hidden Markov model) combined with a linear dynamical system in a hybrid switching state space model (SSSM) and discuss the practical details of training such models with a variational EM algorithm due to [Ghahramani and Hilton,1998]. The performance of the SSSM is evaluated on several financial data sets and it is shown to improve on a number of existing benchmark methods.
Resumo:
Natural language understanding (NLU) aims to map sentences to their semantic mean representations. Statistical approaches to NLU normally require fully-annotated training data where each sentence is paired with its word-level semantic annotations. In this paper, we propose a novel learning framework which trains the Hidden Markov Support Vector Machines (HM-SVMs) without the use of expensive fully-annotated data. In particular, our learning approach takes as input a training set of sentences labeled with abstract semantic annotations encoding underlying embedded structural relations and automatically induces derivation rules that map sentences to their semantic meaning representations. The proposed approach has been tested on the DARPA Communicator Data and achieved 93.18% in F-measure, which outperforms the previously proposed approaches of training the hidden vector state model or conditional random fields from unaligned data, with a relative error reduction rate of 43.3% and 10.6% being achieved.
Resumo:
Resource Space Model is a kind of data model which can effectively and flexibly manage the digital resources in cyber-physical system from multidimensional and hierarchical perspectives. This paper focuses on constructing resource space automatically. We propose a framework that organizes a set of digital resources according to different semantic dimensions combining human background knowledge in WordNet and Wikipedia. The construction process includes four steps: extracting candidate keywords, building semantic graphs, detecting semantic communities and generating resource space. An unsupervised statistical language topic model (i.e., Latent Dirichlet Allocation) is applied to extract candidate keywords of the facets. To better interpret meanings of the facets found by LDA, we map the keywords to Wikipedia concepts, calculate word relatedness using WordNet's noun synsets and construct corresponding semantic graphs. Moreover, semantic communities are identified by GN algorithm. After extracting candidate axes based on Wikipedia concept hierarchy, the final axes of resource space are sorted and picked out through three different ranking strategies. The experimental results demonstrate that the proposed framework can organize resources automatically and effectively.©2013 Published by Elsevier Ltd. All rights reserved.