917 resultados para terminal sliding mode control systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ASTIA Document no. AD 212 466

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At head of title: Microwave Research Institute, Polytechnic Institute of Brooklyn, Systems and Control Group, R-735, PIB-663, contract no. DA-30-069-ORD-1560.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

" Report ; no. TDR-269 (4560-50)-2)."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: p. 90-92.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Final Report, November 1997-October 1999."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"January 1991."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preprint of IRF report, issued June 1977.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master thesis proposes a solution to the approach problem in case of unknown severe microburst wind shear for a fixed-wing aircraft, accounting for both longitudinal and lateral dynamics. The adaptive controller design for wind rejection is also addressed, exploiting the wind estimation provided by suitable estimators. It is able to successfully complete the final approach phase even in presence of wind shear, and at the same time aerodynamic envelope protection is retained. The adaptive controller for wind compensation has been designed by a backstepping approach and feedback linearization for time-varying systems. The wind shear components have been estimated by higher-order sliding mode schemes. At the end of this work the results are provided, an autonomous final approach in presence of microburst is discussed, performances are analyzed, and estimation of the microburst characteristics from telemetry data is examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a robust hybrid force/position control scheme of two cooperative manipulators handling an unknown object interacting with an unknown environment. The uncertainty of the object is considered in the weight, length, and the position of centre of mass (COM). The environment is assumed to have an unknown but high stiffness. A hybrid force/position control algorithm is designed for the known system and environment case. The exponential convergence of the position and the interaction force with the environment is proved using the Lyapunov direct method. Similarly, in the unknown object and environment case, and in the presence of bounded disturbances on the robots and the object, an adaptive sliding mode hybrid force/position control scheme is designed. The asymptotic convergence of the object's position and the constraint force is guaranteed using the proposed control methodology. The internal forces and moments between the object and robots are controlled independently of the object's motion and environmental interaction forces. Simulation results confirm the performance and effectiveness of the suggested control methodologies.