937 resultados para syndrome de Down


Relevância:

40.00% 40.00%

Publicador:

Resumo:

To study the pathogenesis of central nervous system abnormalities in Down syndrome (DS), we have analyzed a new genetic model of DS, the partial trisomy 16 (Ts65Dn) mouse. Ts65Dn mice have an extra copy of the distal aspect of mouse chromosome 16, a segment homologous to human chromosome 21 that contains much of the genetic material responsible for the DS phenotype. Ts65Dn mice show developmental delay during the postnatal period as well as abnormal behaviors in both young and adult animals that may be analogous to mental retardation. Though the Ts65Dn brain is normal on gross examination, there is age-related degeneration of septohippocampal cholinergic neurons and astrocytic hypertrophy, markers of the Alzheimer disease pathology that is present in elderly DS individuals. These findings suggest that Ts65Dn mice may be used to study certain developmental and degenerative abnormalities in the DS brain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trisomy 21 (Down syndrome) is associated with a high incidence of Alzheimer disease and with deficits in cholinergic function in humans. We used the trisomy 16 (Ts16) mouse model for Down syndrome to identify the cellular basis for the cholinergic dysfunction. Cholinergic neurons and cerebral cortical astroglia, obtained separately from Ts16 mouse fetuses and their euploid littermates, were cultured in various combinations. Choline acetyltransferase activity and cholinergic neuron number were both depressed in cultures in which both neurons and glia were derived from Ts16 fetuses. Cholinergic function of normal neurons was significantly down-regulated by coculture with Ts16 glia. Conversely, neurons from Ts16 animals could express normal cholinergic function when grown with normal glia. These observations indicate that astroglia may contribute strongly to the abnormal cholinergic function in the mouse Ts16 model for Down syndrome. The Ts16 glia could lack a cholinergic supporting factor present in normal glia or contain a factor that down-regulates cholinergic function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A mouse model for Down syndrome, Ts1Cje, has been developed. This model has made possible a step in the genetic dissection of the learning, behavioral, and neurological abnormalities associated with segmental trisomy for the region of mouse chromosome 16 homologous with the so-called “Down syndrome region” of human chromosome segment 21q22. Tests of learning in the Morris water maze and assessment of spontaneous locomotor activity reveal distinct learning and behavioral abnormalities, some of which are indicative of hippocampal dysfunction. The triplicated region in Ts1Cje, from Sod1 to Mx1, is smaller than that in Ts65Dn, another segmental trisomy 16 mouse, and the learning deficits in Ts1Cje are less severe than those in Ts65Dn. In addition, degeneration of basal forebrain cholinergic neurons, which was observed in Ts65Dn, was absent in Ts1Cje.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many features of Down syndrome might result from the overdosage of only a few genes located in a critical region of chromosome 21. To search for these genes, cosmids mapping in this region were isolated and used for trapping exons. One of the trapped exons obtained has a sequence very similar to part of the Drosophila single-minded (sim) gene, a master regulator of the early development of the fly central nervous system midline. Mapping data indicated that this exonic sequence is only present in the Down syndrome-critical region in the human genome. Hybridization of this exonic sequence with human fetal kidney poly(A)+ RNA revealed two transcripts of 6 and 4.3 kb. In situ hybridization of a probe derived from this exon with human and rat fetuses showed that the corresponding gene is expressed during early fetal life in the central nervous system and in other tissues, including the facial, skull, palate, and vertebra primordia. The expression pattern of this gene suggests that it might be involved in the pathogenesis of some of the morphological features and brain anomalies observed in Down syndrome.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The discovery that the epsilon 4 allele of the apolipoprotein E (apoE) gene is a putative risk factor for Alzheimer disease (AD) in the general population has highlighted the role of genetic influences in this extremely common and disabling illness. It has long been recognized that another genetic abnormality, trisomy 21 (Down syndrome), is associated with early and severe development of AD neuropathological lesions. It remains a challenge, however, to understand how these facts relate to the pathological changes in the brains of AD patients. We used computerized image analysis to examine the size distribution of one of the characteristic neuropathological lesions in AD, deposits of A beta peptide in senile plaques (SPs). Surprisingly, we find that a log-normal distribution fits the SP size distribution quite well, motivating a porous model of SP morphogenesis. We then analyzed SP size distribution curves in genotypically defined subgroups of AD patients. The data demonstrate that both apoE epsilon 4/AD and trisomy 21/AD lead to increased amyloid deposition, but by apparently different mechanisms. The size distribution curve is shifted toward larger plaques in trisomy 21/AD, probably reflecting increased A beta production. In apoE epsilon 4/AD, the size distribution is unchanged but the number of SP is increased compared to apoE epsilon 3, suggesting increased probability of SP initiation. These results demonstrate that subgroups of AD patients defined on the basis of molecular characteristics have quantitatively different neuropathological phenotypes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-regulation has been identified as an area of difficulty for those with mental retardation. The Goodman Lock Box provides measures of two critical aspects of self-regulation-planfulness and maintenance of goal-directed behavior. In this study, the Lock Box performance of 25 children with Down syndrome was compared with that of 43 typically developing children, matched for mental age (24-36 months). Children in both groups showed similar levels of competence, planfulness and distractibility. However, children with Down syndrome displayed more task-avoidant behavior. Some issues related to the measurements obtained from the Lock Box are raised. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since the discovery in the 1970s that dendritic abnormalities in cortical pyramidal neurons are the most consistent pathologic correlate of mental retardation, research has focused on how dendritic alterations are related to reduced intellectual ability. Due in part to obvious ethical problems and in part to the lack of fruitful methods to study neuronal circuitry in the human cortex, there is little data about the microanatomical contribution to mental retardation. The recent identification of the genetic bases of some mental retardation associated alterations, coupled with the technology to create transgenic animal models and the introduction of powerful sophisticated tools in the field of microanatomy, has led to a growth in the studies of the alterations of pyramidal cell morphology in these disorders. Studies of individuals with Down syndrome, the most frequent genetic disorder leading to mental retardation, allow the analysis of the relationships between cognition, genotype and brain microanatomy. In Down syndrome the crucial question is to define the mechanisms by which an excess of normal gene products, in interaction with the environment, directs and constrains neural maturation, and how this abnormal development translates into cognition and behaviour. In the present article we discuss mainly Down syndrome-associated dendritic abnormalities and plasticity and the role of animal models in these studies. We believe that through the further development of such approaches, the study of the microanatomical substrates of mental retardation will contribute significantly to our understanding of the mechanisms underlying human brain disorders associated with mental retardation. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stanford Binet: Fourth Edition (SB:IV) assessments have been collected longitudinally for 195 individuals with Down syndrome. This article discusses individual assessments which were selected for their ability to highlight major concerns that practitioners need to consider when interpreting intelligence test scores with this population. In this study, Intelligence Quotient (IQ) changed substantially for many individuals, demonstrating changes in classification from a mild level of intellectual impairment on initial assessment to a severe level on later assessment. Subtests used in calculating composite scores were found to have a dramatic effect on IQ. There was up to 9 IQ points difference depending on whether only the “core” subtests or all subtests used by the assessor were included in the calculations. Thirty-seven percent of the assessments were at “floor level” (i.e., IQ of 36), despite obvious divergent abilities illustrated by age equivalent scores. Mean Age Equivalent (MAE) scores were also problematic as they failed to adequately represent either the range, or divergence, of abilities of the individuals whose data are presented. Directions for future research are discussed.